login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the prime zeta modulo function at 4 for primes of the form 4k+1.
4

%I #18 Apr 26 2021 05:53:05

%S 0,0,1,6,4,9,5,8,4,1,5,4,0,2,9,2,9,1,5,9,8,9,9,6,7,6,1,3,1,3,6,3,8,8,

%T 5,1,8,2,7,4,8,7,9,0,9,9,4,3,8,3,4,7,3,2,1,4,7,8,1,1,5,2,5,8,3,8,8,0,

%U 0,4,9,7,5,1,7,8,7,7,7,8,8,9,3,6,8,0,1,8,2,8,0,8,7,2,2,3,0,3,6,4,6,3,9,2,9

%N Decimal expansion of the prime zeta modulo function at 4 for primes of the form 4k+1.

%H X. Gourdon and P. Sebah, <a href="http://numbers.computation.free.fr/Constants/Miscellaneous/constantsNumTheory.html">Some Constants from Number theory</a>.

%H R. J. Mathar, <a href="http://arxiv.org/abs/1008.2547">Table of Dirichlet L-series and prime zeta modulo functions for small moduli</a>, arXiv:1008.2547 [math.NT], 2010-2015, value P(m=4, n=1, s=4), page 21.

%H <a href="/index/Z#zeta_function">OEIS index to entries related to the (prime) zeta function</a>.

%F Zeta_Q(4) = Sum_{p in A002144} 1/p^4 where A002144 = {primes p == 1 mod 4};

%F = Sum_{odd m > 0} mu(m)/2m * log(DirichletBeta(4m)*zeta(4m)/zeta(8m)/(1+2^(-4m)))[using Gourdon & Sebah, Theorem 11] - _M. F. Hasler_, Apr 26 2021.

%e 0.0016495841540292915989967613136388518274879099438347321478115258388...

%t a[s_] = (1 + 2^-s)^-1* DirichletBeta[s] Zeta[s]/Zeta[2 s]; m = 120; $MaxExtraPrecision = 680; Join[{0, 0}, RealDigits[(1/2)* NSum[MoebiusMu[2n + 1]*Log[a[(2n + 1)*4]]/(2n + 1), {n, 0, m}, AccuracyGoal -> m, NSumTerms -> m, PrecisionGoal -> m, WorkingPrecision -> m]][[1]]][[1 ;; 105]] (* _Jean-François Alcover_, Jun 24 2011, after X. Gourdon and P. Sebah, updated Mar 14 2018 *)

%o (PARI) A086034_upto(N=100)={localprec(N+3); digits((PrimeZeta41(4)+1)\.1^N)[^1]} \\ see A086032 for the PrimeZeta41 function. - _M. F. Hasler_, Apr 26 2021

%Y Cf. A085993 (same for primes 4k+3), A343624 (for primes 3k+1), A343614 (for primes 3k+2), A086032 - A086039 (for 1/p^2, ..., 1/p^9), A085541 (PrimeZeta(3)), A002144 (primes of the form 4k+1).

%K cons,nonn

%O 0,4

%A Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 07 2003

%E Edited by _M. F. Hasler_, Apr 26 2021