Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Jun 23 2016 10:30:59
%S 17,43,47,61,71,101,107,109,151,197,223,317,349,421,461,521,569,631,
%T 673,701,821,881,919,947,971,991,1051,1091,1109,1153,1181,1217,1231,
%U 1259,1321,1361,1367,1549,1693,1801,1847,1933,1951,1979,2143,2207
%N Primes p such that 2*p-1 and 2*p+1 are semiprimes.
%C a(n) = A086005(n)/2.
%H T. D. Noe, <a href="/A086006/b086006.txt">Table of n, a(n) for n=1..10000</a>
%F A064911(2*a(n)-1) * A064911(2*a(n)+1) = 1. - _Reinhard Zumkeller_, Aug 08 2013
%e 101 is prime and 2*101-1=201=3*67, 2*101+1=203=7*29, therefore 101 is a term.
%e It is the sixth term and a(6)=101=A086005(6)/2.
%t Select[Prime[Range[400]],PrimeOmega[2#-1]==PrimeOmega[2#+1]==2&] (* _Harvey P. Dale_, Jun 23 2016 *)
%o (PARI) isok(n) = isprime(n) && (bigomega(2*n+1) == 2) && (bigomega(2*n-1) == 2) \\ _Michel Marcus_, Aug 01 2013
%o (Haskell)
%o a086006 = flip div 2 . a086005 -- _Reinhard Zumkeller_, Aug 08 2013
%Y Cf. A001358, A000040.
%K nonn
%O 1,1
%A _Reinhard Zumkeller_, Jul 07 2003