Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #99 Dec 19 2024 07:26:58
%S 1,1,9,9,6,7,8,6,4,0,2,5,7,7,3,3,8,3,3,9,1,6,3,6,9,8,4,8,6,4,1,1,4,1,
%T 9,4,4,2,6,1,4,5,8,7,8,8,4,1,8,6,0,7,2,0,8,9,1,5,4,7,7,7,8,3,9,1,8,1,
%U 2,4,7,2,5,2,2,3,8,4,7,4,7,9,9,9,9,0,8,6,9,9,2,1,4,6,5,0,9,3,7,9,8,8
%N Decimal expansion of solution to e^x*(-1 + x) = (1 + x)/e^x.
%C This constant can also be defined as the root of coth x = x, as this equation and the above are equivalent. - _Carl R. White_, Dec 09 2003. Also the root of x*tanh x = 1. - _N. J. A. Sloane_, May 07 2020
%C This constant is also the point on the parametric tractrix (t - tanh(t), sech(t)) the least distant from the origin. - _Michael Clausen_, Feb 18 2013
%C This constant also equals sqrt(lambda^2+1), where lambda is the Laplace limit constant A033259. - _Jean-François Alcover_, Sep 08 2014, after Steven Finch.
%C For each of the real symmetric n X n matrices M defined by M(i,j) = max(i,j) with n >= 2, there exist n-1 negative eigenvalues < -1/4 and only one positive eigenvalue lambda(n) such that n^2/2 < lambda(n) < n^2. Indeed, when n tends to infinity, lambda(n) ~ n^2/(this constant)^2 (see reference O. Carton et al.). For n = 2, the positive eigenvalue is (3+sqrt(17))/2 [A178255]. - _Bernard Schott_, Mar 13 2020
%D O. Carton, L. Rosaz, M. Zeitoun, Problèmes corrigés de Mathématiques posés au Concours de Mines/Ponts, Tome 5, Ellipses, 1992; Problème Mines-Ponts 1991 - Options M, P', TA - Epreuve pratique p. 125.
%D Steven R. Finch, Mathematical constants, Volume 94, Encyclopedia of mathematics and its applications, Cambridge University Press, 2003, p. 268.
%H G. C. Greubel, <a href="/A085984/b085984.txt">Table of n, a(n) for n = 1..5000</a>
%H Jogundas Armaitis, <a href="https://web.science.uu.nl/ITF/Teaching/2011/JogundasArmaitis.pdf">Molecules and Polarons in Extremely Imbalanced Fermi Mixtures</a>, Master's Thesis, Aug 11 2011, Institute for Theoretical Physics, Utrecht University.
%H Robert Ferréol, <a href="https://www.mathcurve.com/courbes2d.gb/tractrice/tractrice.shtml">Tractrix</a>, Mathcurve.
%H D. E. Knuth, <a href="https://cs.stanford.edu/~knuth/papers/whirlpool.pdf">Whirlpool Permutations</a>, May 05 2020.
%H Mathematics Stack Exchange, <a href="https://math.stackexchange.com/questions/4393448/is-there-a-closed-form-of-the-laplace-limit-constant-x-such-that-fracxe#4401425">Laplace limit constant</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/KeplersEquation.html">Kepler's Equation</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LaplaceLimit.html">Laplace Limit</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HyperbolicCotangent.html">Hyperbolic Cotangent</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Tractrix">Tractrix</a>.
%F Equals 1 + 2*Sum_{n>=1} (Laguerre(n-1,1,4n)/n)*e^(-2n) (see Mathematics Stack Exchange in Links). - _Aaron Hendrickson_, Mar 17 2022
%e 1.1996786402577338339163698486411419442614587884186072...
%t RealDigits[ x /. FindRoot[ Coth[x] == x, {x, 1}, WorkingPrecision -> 102]] // First (* _Jean-François Alcover_, Feb 08 2013 *)
%t 1+2 NSum[LaguerreL[n-1,1,4 n]/n Exp[-2 n],{n,1,Infinity}] //
%t (* _Aaron Hendrickson_, Mar 17 2021 *)
%o (PARI) solve(u=1,2,tanh(u)-1/u) /* type e.g. \p99 to get 99 digits; _M. F. Hasler_, Feb 01 2011 */
%Y Cf. A003957 (x = cos(x)), A009379, A033259, A069855, A209289.
%K nonn,cons,changed
%O 1,3
%A _Eric W. Weisstein_, Jul 06 2003