login
A085973
Number of ways a loop can cross two parallel roads 2n times.
1
3, 2, 5, 22, 123, 800, 5754, 44514, 363893, 3106288, 27457050, 249768040, 2327398572, 22135606604, 214270565106, 2106151496858, 20982672402385, 211545853142240, 2155553788108702, 22174250217880984, 230075164780356214
OFFSET
0,1
COMMENTS
There is no obligation to cross the lower road (cf. A077054).
FORMULA
a(n) = A077054(n) + A005315(n) for n >= 1. - Andrew Howroyd, Nov 26 2015
MATHEMATICA
A005315 = Cases[Import["https://oeis.org/A005315/b005315.txt", "Table"], {_, _}][[All, 2]];
A005316 = Cases[Import["https://oeis.org/A005316/b005316.txt", "Table"], {_, _}][[All, 2]];
a[n_] := If[n == 0, 3, A005315[[n + 1]] + A005316[[2 n + 1]]];
a /@ Range[0, 20] (* Jean-François Alcover, Sep 08 2019 *)
CROSSREFS
Sequence in context: A269155 A103938 A304534 * A302854 A248243 A005265
KEYWORD
nonn
AUTHOR
N. J. A. Sloane and Jon Wild, Aug 25 2003
EXTENSIONS
a(13)-a(20) from Andrew Howroyd, Nov 26 2015
STATUS
approved