login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085973
Number of ways a loop can cross two parallel roads 2n times.
1
3, 2, 5, 22, 123, 800, 5754, 44514, 363893, 3106288, 27457050, 249768040, 2327398572, 22135606604, 214270565106, 2106151496858, 20982672402385, 211545853142240, 2155553788108702, 22174250217880984, 230075164780356214
OFFSET
0,1
COMMENTS
There is no obligation to cross the lower road (cf. A077054).
FORMULA
a(n) = A077054(n) + A005315(n) for n >= 1. - Andrew Howroyd, Nov 26 2015
MATHEMATICA
A005315 = Cases[Import["https://oeis.org/A005315/b005315.txt", "Table"], {_, _}][[All, 2]];
A005316 = Cases[Import["https://oeis.org/A005316/b005316.txt", "Table"], {_, _}][[All, 2]];
a[n_] := If[n == 0, 3, A005315[[n + 1]] + A005316[[2 n + 1]]];
a /@ Range[0, 20] (* Jean-François Alcover, Sep 08 2019 *)
CROSSREFS
Sequence in context: A269155 A103938 A304534 * A302854 A248243 A005265
KEYWORD
nonn
AUTHOR
N. J. A. Sloane and Jon Wild, Aug 25 2003
EXTENSIONS
a(13)-a(20) from Andrew Howroyd, Nov 26 2015
STATUS
approved