login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Horadam sequence (0,1,6,4).
16

%I #32 Sep 08 2022 08:45:11

%S 0,1,4,22,112,580,2992,15448,79744,411664,2125120,10970464,56632576,

%T 292353088,1509207808,7790949760,40219045888,207621882112,

%U 1071801803776,5532938507776,28562564853760

%N Horadam sequence (0,1,6,4).

%C a(n) / a(n-1) converges to sqrt(10) + 2 as n approaches infinity; sqrt(10) + 2 can also be written as sqrt(2) * (sqrt(2) + sqrt(5)), 2 * sqrt(2) * Phi - sqrt(2) + 2 and lim_{n->infinity} sqrt(2) * (sqrt(2) + (L(n) / F(n))), where L(n) is the n-th Lucas number and F(n) is the n-th Fibonacci number.

%H G. C. Greubel, <a href="/A085939/b085939.txt">Table of n, a(n) for n = 0..1000</a>

%H Eric Weisstein, <a href="http://mathworld.wolfram.com/LucasNumber.html">Lucas Number</a>

%H Eric Weisstein, <a href="http://mathworld.wolfram.com/LucasSequence.html">Lucas Sequence</a>

%H Eric Weisstein, <a href="http://mathworld.wolfram.com/HoradamSequence.html">Horadam Sequence</a>

%H Eric Weisstein, <a href="http://mathworld.wolfram.com/FibonacciNumber.html">Fibonacci Number</a>

%H Eric Weisstein, <a href="http://mathworld.wolfram.com/PellNumber.html">Pell Number</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4, 6).

%F a(n) = s*a(n-1) + r*a(n-2); for n > 1, where a(0) = 0, a(1) = 1, s = 4, r = 6.

%F a(n) = ((2+sqrt(10))^n - (2-sqrt(10))^n)/(2*sqrt(10)). - _Rolf Pleisch_, Jul 06 2009

%F G.f.: x/(1-4*x-6*x^2). - _Colin Barker_, Jan 10 2012

%e a(4) = 112 because a(3) = 22, a(2) = 4, s = 4, r = 6 and (4 * 22) + (6 * 4) = 112.

%t Join[{a=0,b=1},Table[c=4*b+6*a;a=b;b=c,{n,100}]] (* _Vladimir Joseph Stephan Orlovsky_, Jan 16 2011 *)

%t LinearRecurrence[{4,6},{0,1},30] (* _Harvey P. Dale_, Jul 20 2016 *)

%o (Sage) [lucas_number1(n,4,-6) for n in range(0, 21)] # _Zerinvary Lajos_, Apr 23 2009

%o (PARI) x='x+O('x^30); concat([0], Vec(x/(1-4*x-6*x^2))) \\ _G. C. Greubel_, Jan 16 2018

%o (Magma) I:=[0,1]; [n le 2 select I[n] else 4*Self(n-1) + 6*Self(n-2): n in [1..30]]; // _G. C. Greubel_, Jan 16 2018

%Y Cf. A024318, A000032, A000129.

%K easy,nonn

%O 0,3

%A _Ross La Haye_, Aug 16 2003