Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Oct 19 2017 03:14:20
%S 1,1,12,1,40,80,1,84,560,448,1,144,2016,5376,2304,1,220,5280,29568,
%T 42240,11264,1,312,11440,109824,329472,292864,53248,1,420,21840,
%U 320320,1647360,3075072,1863680,245760
%N Triangle read by rows: T(n,m) = 4^m * (2*n+1)! / ( (2*n - 2*m + 1)! * (2*m)! ), row n has n+1 terms.
%C Row n has the unsigned coefficients of a polynomial whose roots are 2*tan(Pi*k/(2n+1)) [for k = 1 to 2n].
%C Polynomial of row n = Sum_{m=0..n} (-1)^m T(n,m) x^(2n-2m).
%F From _Peter Bala_, Apr 10 2017: (Start)
%F O.g.f.: (1 - (1 - 4*x)*t)/(1 - 2*(1 + 4*x)*t + (1 - 4*x)^2*t^2) = 1 + (1 + 12*x)*t + (1 + 40*x + 80*x^2)*t^2 + ....
%F n_th row polynomial R(n,x) = 1/2*( (1 + 2*sqrt(x))^(2*n+1) + (1 - 2*sqrt(x))^(2*n+1) ). These polynomials occur in the expansion cosh((2*n + 1)*arctanh(2*x)) = R(n,x^2)/(1 - 4*x^2)^(n+1/2). See A285043 - A285046.
%F For n >= 1, R(n,x) = (1 - 4*x)^n( U(n,(1 + 4*x)/(1 - 4*x)) - U(n-1,(1 + 4*x)/(1 - 4*x)) ), where U(n,x) is the n-th Chebyshev polynomial of the second kind. (End)
%e 1
%e x^2 - 12
%e x^4 - 40x^2 + 80
%e x^6 - 84x^4 + 560x^2 - 448
%e x^8 - 144x^6 + 2016x^4 - 5376x^2 + 2304
%e x^10 - 220x^8 + 5280x^6 - 29568x^4 + 42240x^2 - 11264
%e Polynomial #4 has eight roots: 2 tan (Pi*k/9) for k=1 to 8.
%p for n from 0 to 10 do lprint(seq(4^k*binomial(2*n + 1, 2*k), k = 0..n)) end do; # _Peter Bala_, Apr 10 2017
%Y Cf. A085841, A285043, A284044, A285045, A285046.
%K nonn,tabl,easy
%O 0,3
%A _Gary W. Adamson_, Jul 05 2003
%E Edited by _Don Reble_, Nov 13 2005