login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of three-choice paths along a corridor of height 5, starting from the lower side.
15

%I #59 Sep 08 2022 08:45:11

%S 1,2,5,13,35,96,266,741,2070,5791,16213,45409,127206,356384,998509,

%T 2797678,7838801,21963661,61540563,172432468,483144522,1353740121,

%U 3793094450,10628012915,29779028189,83438979561,233790820762,655067316176,1835457822857,5142838522138,14409913303805

%N Number of three-choice paths along a corridor of height 5, starting from the lower side.

%C From _Svjetlan Feretic_, Jun 01 2013: (Start)

%C A three-choice path is a path whose steps lie in the set {(1,1), (1,0), (1,-1)}.

%C The paths under consideration "live" in a corridor like 0<=y<=5. Thus, the ordinate of a vertex of a path can take six values (0,1,2,3,4,5), but the height of the corridor is five.

%C a(1)=1 is the number of paths with zero steps, a(2)=2 is the number of paths with one step, a(3)=5 is the number of paths with two steps, ...

%C Narrower corridors produce A000012, A000079, A000129, A001519, A057960. An infinitely wide corridor would produce A005773.

%C (End)

%C Diagonal sums of A114164. - _Paul Barry_, Nov 15 2005

%C C(n):= a(n)*(-1)^n appears in the following formula for the nonpositive powers of rho*sigma, where rho:=2*cos(Pi/7) and sigma:=sin(3*Pi/7)/sin(Pi/7) = rho^2-1 are the ratios of the smaller and larger diagonal length to the side length in a regular 7-gon (heptagon). See the Steinbach reference where the basis <1,rho,sigma> is used in an extension of the rational field. (rho*sigma)^(-n) = C(n) + B(n)*rho + A(n)*sigma,n>=0, with B(n)= A181880(n-2)*(-1)^n, and A(n)= A116423(n+1)*(-1)^(n+1). For the nonnegative powers see A120757(n), |A122600(n-1)| and A181879(n), respectively. See also a comment under A052547.

%C a(n) is also the number of bi-wall directed polygons with n cells. (The definition of bi-wall directed polygons is given in the article on A122737.)

%H G. C. Greubel, <a href="/A085810/b085810.txt">Table of n, a(n) for n = 1..1000</a>

%H Svjetlan Feretic, <a href="http://www.gradri.uniri.hr/adminmax/files/staff/bi_wall_5.pdf"> Generating functions for bi-wall directed polygons</a>, in: Proc. of the Seventh Int. Conf. on Lattice Path Combinatorics and Applications (eds. S. Rinaldi and S. G. Mohanty), Siena, 2010, 147-151.

%H Peter Steinbach, <a href="http://www.jstor.org/stable/2691048">Golden fields: a case for the heptagon</a>, Math. Mag. 70 (1997), p. 22-31 (formula 5).

%H Roman Witula, Damian Slota and Adam Warzynski, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Slota/slota57.html">Quasi-Fibonacci Numbers of the Seventh Order</a>, J. Integer Seq., 9 (2006), Article 06.4.3.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (4,-3,-1).

%F a(n) = 4*a(n-1) - 3*a(n-2) - a(n-3).

%F From _Paul Barry_, Nov 15 2005: (Start)

%F G.f.: (1-2*x)/(1-4*x+3*x^2+x^3).

%F a(n) = Sum_{k=0..floor(n/2)} (Sum_{j=0..n-k} C(n-k, j)*C(j+k, 2k));

%F a(n) = Sum_{k=0..floor(n/2)} (Sum_{j=0..n-k} C(n-k, k+j)*C(k, k-j)*2^(n-2k-j));

%F a(n) = Sum_{k=0..floor(n/2)} (Sum_{j=0..n-2*k} C(n-j, n-2*k-j)*C(k, j)(-1)^j*2^(n-2*k-j)). (End)

%F a(n-1) = -B(n;-1) = (1/7)*((c(4)-c(1))*(1-c(1))^n + (c(1)-c(2))*(1-c(2))^n + (c(2)-c(4))*(1-c(4))^n), where a(-1):=0, c(j):=2*cos(2*Pi*j/7). Moreover, B(n;d), n in N, d in C, denotes the respective quasi-Fibonacci number defined in comments to A121449 or in Witula-Slota-Warzynski's paper (see also A077998, A006054, A052975, A094789, A121442). - _Roman Witula_, Aug 09 2012

%t LinearRecurrence[{4,-3,-1}, {1,2,5}, 50] (* _Roman Witula_, Aug 09 2012 *)

%t CoefficientList[Series[(1 - 2 x)/(1 - 4 x + 3 x^2 + x^3), {x, 0, 40}], x] (* _Vincenzo Librandi_, Sep 18 2015 *)

%o (Magma) I:=[1,2,5]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2)-Self(n-3): n in [1..35]]; // _Vincenzo Librandi_, Sep 18 2015

%o (PARI) x='x+O('x^30); Vec((1-2*x)/(1-4*x+3*x^2+x^3)) \\ _G. C. Greubel_, Apr 19 2018

%Y Cf. A000012, A000079, A000129, A001519, A057960, A005773.

%K easy,nonn

%O 1,2

%A _Philippe Deléham_, Jul 25 2003

%E Name corrected and clarified, and offset 1 from _Svjetlan Feretic_, Jun 01 2013