login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Right-truncatable semiprimes.
6

%I #43 Apr 03 2023 10:36:10

%S 4,6,9,46,49,62,65,69,91,93,94,95,466,469,493,497,622,623,626,629,655,

%T 694,695,697,698,699,913,914,917,933,934,939,943,949,951,955,958,959,

%U 4661,4666,4667,4694,4699,4934,4939,4971,4979,6227,6233,6238

%N Right-truncatable semiprimes.

%C Semiprimes in which repeatedly deleting the rightmost digit gives a semiprime at every step until a single-digit semiprime remains.

%C The sequence is finite. According to Shyam Sunder Gupta the number 95861957783594714393831931415189937897 is the largest right-truncatable semiprime.

%C The total number of right-truncatable semiprimes including the single-digit semiprimes 4, 6 and 9 is 56076. - _Shyam Sunder Gupta_, Jan 13 2008

%C No term ends in (or contains) 0 else it would be divisible by 2, 5, and some other factor. - _Michael S. Branicky_, Aug 04 2022

%D Shyam Sunder Gupta, Truncatable semi-primes, Mathematical Spectrum 39:3 (2007), pp. 109-112.

%H Michael S. Branicky, <a href="/A085733/b085733.txt">Table of n, a(n) for n = 1..56076</a> (full sequence).

%H I. O. Angell and H. J. Godwin, <a href="https://doi.org/10.1090/S0025-5718-1977-0427213-2">On truncatable primes</a>, Math. Comput. 31:137, 265-267, 1977.

%H G. L. Honaker, Jr., <a href="https://t5k.org/curios/page.php?short=46613113151331733179">Prime Curios! 46613113151331733179</a>

%H Shyam Sunder Gupta, <a href="https://t5k.org/curios/page.php?curio_id=6861">The largest right-truncatable semiprime.</a> Prime Curios.

%H <a href="/index/Tri#tprime">Index entries for sequences related to truncatable primes</a>

%o (Python)

%o from sympy import factorint

%o from itertools import islice

%o def issemiprime(n): return sum(factorint(n).values()) == 2

%o def agen():

%o semis, digits = [4, 6, 9], "123456789" # can't end in 0

%o while len(semis) > 0:

%o yield from semis

%o cands = set(int(str(p)+d) for p in semis for d in digits)

%o semis = sorted(c for c in cands if issemiprime(c))

%o print(list(islice(agen(), 50))) # _Michael S. Branicky_, Aug 04 2022

%Y Cf. A001358, A213019, A086697.

%K nonn,base,fini,full

%O 1,1

%A _G. L. Honaker, Jr._, Jul 20 2003

%E More terms from _Reinhard Zumkeller_, Jul 22 2003

%E More terms from _Hugo Pfoertner_, Jul 22 2003