login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085695
a(n) = Fibonacci(n)*Fibonacci(3n)/2.
3
0, 1, 4, 34, 216, 1525, 10336, 71149, 486864, 3339106, 22881100, 156843721, 1074985344, 7368157369, 50501844796, 346145466850, 2372514562656, 16261461342589, 111457702083424, 763942486626661, 5236139616899400
OFFSET
0,3
COMMENTS
This is a divisibility sequence, that is, if n | m then a(n) | a(m). However, it is not a strong divisibility sequence. It is the case k = -3 of a 1-parameter family of 4th-order linear divisibility sequences with o.g.f. x*(1 - x^2)/( (1 - k*x + x^2)*(1 - (k^2 - 2)*x + x^2) ). Compare with A000290 (case k = 2) and A215465 (case k = 3). - Peter Bala, Jan 17 2014
a(n) + a(n+1) is the numerator of the continued fraction [1,...,1,4,...,4] with n 1's followed by n 4's. - Greg Dresden and Hexuan Wang, Aug 16 2021
LINKS
H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
FORMULA
G.f.: ( x - x^3 )/( 1 - 4 x - 19 x^2 - 4 x^3 + x^4 ).
Recurrence: a(n+4) = 4*a(n+3) + 19*a(n+2) + 4*a(n+1) - a(n).
a(n) = a(-n) and A153173(n) = 1 + 10*a(n) for all n in Z. - Michael Somos, Apr 23 2022
EXAMPLE
G.f. = x + 4*x^2 + 34*x^3 + 216*x^4 + 1525*x^5 + 10336*x^6 + ... - Michael Somos, Apr 23 2022
MATHEMATICA
Array[Times @@ MapIndexed[Fibonacci[#]/First@ #2 &, {#, 3 #}] &, 21, 0] (* or *) LinearRecurrence[{4, 19, 4, -1}, {0, 1, 4, 34}, 21] (* or *)
CoefficientList[Series[(x - x^3)/(1 - 4 x - 19 x^2 - 4 x^3 + x^4), {x, 0, 20}], x] (* Michael De Vlieger, Dec 17 2017 *)
PROG
(MuPAD) numlib::fibonacci(3*n)*numlib::fibonacci(n)/2 $ n = 0..35; // Zerinvary Lajos, May 13 2008
(PARI) a(n) = fibonacci(n)*fibonacci(3*n)/2 \\ Andrew Howroyd, Dec 17 2017
CROSSREFS
Sequence in context: A231518 A196908 A197075 * A049293 A198687 A116430
KEYWORD
easy,nonn
AUTHOR
Emanuele Munarini, Jul 18 2003
STATUS
approved