login
A085604
T(n,k) = highest power of prime(k) dividing n!, read by rows.
7
0, 1, 0, 1, 1, 0, 3, 1, 0, 0, 3, 1, 1, 0, 0, 4, 2, 1, 0, 0, 0, 4, 2, 1, 1, 0, 0, 0, 7, 2, 1, 1, 0, 0, 0, 0, 7, 4, 1, 1, 0, 0, 0, 0, 0, 8, 4, 2, 1, 0, 0, 0, 0, 0, 0, 8, 4, 2, 1, 1, 0, 0, 0, 0, 0, 0, 10, 5, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 10, 5, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 11, 5, 2, 2, 1, 1, 0, 0, 0
OFFSET
1,7
COMMENTS
T(n,1) = A011371(n); T(n,2) = A054861(n) for n>1;
T(n,k) = number of occurrences of prime(k) as factor in numbers <= n (with repetitions);
Sum{T(n,k): 1<=k<=n} = A022559(n);
T(n, A000720(n)) = 1; T(n,k) = 0, A000720(n)<k<n.
T(n,k) = A115627(n,k) for n > 1 and k=1..A000720(n). - Reinhard Zumkeller, Nov 01 2013
LINKS
EXAMPLE
0;
1,0;
1,1,0;
3,1,0,0;
3,1,1,0,0;
4,2,1,0,0,0;
4,2,1,1,0,0,0;
7,2,1,1,0,0,0,0;
7,4,1,1,0,0,0,0,0;
8,4,2,1,0,0,0,0,0,0;
MATHEMATICA
T[n_, k_] := Module[{p = Prime[k], jm}, jm = Floor[Log[p, n]]; Sum[Quotient[n, p^j], {j, 1, jm}]];
Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 19 2021 *)
PROG
(Haskell)
a085604 n k = a085604_tabl !! (n-2) !! (k-1)
a085604_row 1 = [0]
a085604_row n = a115627_row n ++ (take $ a062298 $ fromIntegral n) [0, 0..]
a085604_tabl = map a085604_row [1..]
-- Reinhard Zumkeller, Nov 01 2013
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Reinhard Zumkeller, Jul 07 2003
STATUS
approved