login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n*(n + 1)^3.
3

%I #33 Jul 02 2023 02:18:25

%S 0,8,54,192,500,1080,2058,3584,5832,9000,13310,19008,26364,35672,

%T 47250,61440,78608,99144,123462,152000,185220,223608,267674,317952,

%U 375000,439400,511758,592704,682892,783000,893730,1015808,1149984,1297032,1457750,1632960

%N a(n) = n*(n + 1)^3.

%H Vincenzo Librandi, <a href="/A085540/b085540.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).

%F a(n) = 2*A092364(n+1). - _Zerinvary Lajos_, May 09 2007

%F G.f.: -2*x*(4 + 7*x + x^2)/(x - 1)^5. - _R. J. Mathar_, Mar 10 2011

%F a(n) = A085537(n-1). - _Eric W. Weisstein_, Sep 08 2017

%F E.g.f.: exp(x)*x*(8 + 19*x + 9*x^2 + x^3). - _Stefano Spezia_, Jun 10 2023

%F From _Amiram Eldar_, Jul 02 2023: (Start)

%F Sum_{n>=1} 1/a(n) = 3 - Pi^2/6 - zeta(3).

%F Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/12 + 2*log(2) + 3*zeta(3)/4 - 3. (End)

%t Table[n (n + 1)^3, {n, 0, 40}] (* _Vincenzo Librandi_, Aug 15 2016 *)

%t LinearRecurrence[{5,-10,10,-5,1},{0,8,54,192,500},40] (* _Harvey P. Dale_, May 06 2019 *)

%o (Magma) [n*(n+1)^3: n in [0..40]]; // _Vincenzo Librandi_, Aug 15 2016

%Y Cf. A085537 (same sequence with a 0 prepended), A092364.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, Jul 05 2003