login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Product_{k=0..n} (2^(2k+1)+1).
1

%I #29 Oct 19 2016 03:11:43

%S 1,3,27,891,114939,58963707,120816635643,989850695823099,

%T 32436417451427131131,4251538544610908358733563,

%U 2229034892015508532492061011707,4674627210894999765441323226884370171,39213619892958693087378972992951269575782139,1315790781385749638968020894900792847245520205672187

%N a(n) = Product_{k=0..n} (2^(2k+1)+1).

%C Partial products of A087289. - _Michel Marcus_, Feb 15 2014

%H Vincenzo Librandi, <a href="/A085521/b085521.txt">Table of n, a(n) for n = -1..50</a>

%H J. A. Thas, <a href="http://dx.doi.org/10.1016/S0167-5060(08)70936-1">Old and new results on spreads and ovoids of finite classical polar spaces</a>, Annals of Discrete Mathematics, Vol. 52, 1992, pp. 529-544, Combinatorics '90 — Recent Trends and Applications.

%F a(n) ~ c * 2^(n*(n+2)), where c = 2*QPochhammer(-1/2, 1/4) = 3.5167992012887276... . - _Vaclav Kotesovec_, Oct 19 2016

%t Table[Product[2^(2k+1)+1,{k,0,n}],{n,-1,15}] (* _Harvey P. Dale_, Jun 21 2011 *)

%t Table[QPochhammer[-2, 4, n + 1], {n, -1, 15}] (* _Vladimir Reshetnikov_, Oct 18 2016 *)

%o (PARI) a(n) = prod(k=0, n, 2^(2*k+1)+1); \\ _Michel Marcus_, Oct 17 2016

%K nonn

%O -1,2

%A _N. J. A. Sloane_, Jul 03 2003