login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085456
Sum_{i=0..n} Sum_{j=0..i} a(j) * a(i-j) = (-7)^n.
3
1, -4, 20, -116, 708, -4452, 28532, -185300, 1215268, -8030404, 53381844, -356577588, 2391430020, -16092704292, 108605848116, -734783381652, 4982063186916, -33844621986180, 230306722637204, -1569571734301172, 10711405584991300, -73188920628617956, 500643475619050740
OFFSET
0,2
LINKS
FORMULA
G.f.: A(x)=Sqrt((1-x)/(1+7x)).
From Seiichi Manyama, Feb 03 2023: (Start)
a(n) = Sum_{k=0..n} (-2)^k * binomial(n-1,n-k) * binomial(2*k,k).
n*a(n) = -2*(3*n-1)*a(n-1) + 7*(n-2)*a(n-2). (End)
MATHEMATICA
CoefficientList[Series[Sqrt[(1-x)/(1+7 x)], {x, 0, 30}], x]
PROG
(PARI) a(n) = sum(k=0, n, (-2)^k*binomial(n-1, n-k)*binomial(2*k, k)); \\ Seiichi Manyama, Feb 03 2023
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Jul 01 2003
STATUS
approved