|
|
A085452
|
|
Triangle T(n,k) read by rows: T(n,k) = number of cycles of length 2k in the binary n-cube, for n >= 2, k = 2, 3, ..., 2^(n-1).
|
|
8
|
|
|
1, 6, 16, 6, 24, 128, 696, 2112, 5024, 5376, 1344, 80, 640, 6720, 68736, 591200, 4652160, 32146800, 185285120, 865894848, 3136412160, 8315531200, 14800412160, 15448366080, 7413471744, 906545760, 240, 2560, 39840, 698112, 12226560, 203258880, 3257746560
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,2
|
|
COMMENTS
|
Row n contains 2^(n-1)-1 terms.
Also the triangle of even-order coefficients (odd coefficients are all 0) of the hypercube graph cycle polynomials ordered from smallest to largest exponent starting with x^4. - Eric W. Weisstein, Feb 05 2014
|
|
REFERENCES
|
Initial terms computed by Daniele Degiorgi (danieled(AT)inf.ethz.ch).
|
|
LINKS
|
|
|
EXAMPLE
|
Triangle begins:
1,
6, 16, 6,
24, 128, 696, 2112, 5024, 5376, 1344,
80, 640, 6720, 68736, 591200, 4652160, 32146800, 185285120, 865894848, 3136412160, 8315531200, 14800412160, 15448366080, 7413471744, 906545760,
....
In terms of cycle polynomials:
x^4
6*x^4 + 16*x^6 + 6*x^8
24*x^4 + 128*x^6 + 696*x^8 + 2112*x^10 + 5024*x^12 + 5376*x^14 + 1344*x^16
...
|
|
MATHEMATICA
|
Table[Table[Length[FindCycle[HypercubeGraph[n], {k}, All]], {k, 4, 2^n, 2}], {n, 4}] // Flatten (* Eric W. Weisstein, Mar 23 2020 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,tabf,more,hard
|
|
AUTHOR
|
Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 12 2003
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|