login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of p = prime(n) and largest prime divisor of p-1.
0

%I #19 May 11 2024 20:24:25

%S 5,7,10,16,16,19,22,34,36,36,40,46,50,70,66,88,66,78,78,76,92,124,100,

%T 100,106,120,160,112,120,134,144,154,162,186,156,170,166,250,216,268,

%U 186,210,196,204,210,218,260,340,248,262,256,246,256,259,394,336,276,300

%N Sum of p = prime(n) and largest prime divisor of p-1.

%F a(n) = p + A006530(p-1) where p = prime(n).

%e a(2) = prime(2) + gpf(prime(2) - 1) = 3 + gpf(2) = 3 + 2 = 5.

%o (PARI) cminuspm2(n) = \\ prime + maxprime of prime-1

%o { forprime(x=5,n, forstep(p=x,2,-1, if(isprime(p) & (x-1)%p==0,print1(x+p,","); break); ) ) }

%o (PARI) a(n) = my(p=prime(n)); p+vecmax(factor(p-1)[,1]); \\ _Michel Marcus_, May 07 2024

%Y Cf. A006530, A023503, A274022.

%K easy,nonn

%O 2,1

%A _Cino Hilliard_, Aug 12 2003

%E Offset 2 and a(2) from _Michel Marcus_, May 07 2024

%E Edited by _Jon E. Schoenfield_, May 07 2024