Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #39 Sep 08 2022 08:45:11
%S 0,1,2,3,11,12,13,21,22,31,101,102,103,111,112,113,121,122,201,202,
%T 211,212,221,301,311,1001,1002,1003,1011,1012,1013,1021,1022,1031,
%U 1101,1102,1103,1111,1112,1113,1121,1122,1201,1202,1211,1212,1301,2001,2002,2011
%N Numbers such that first reversing digits and then squaring equals the result of first squaring and then reversing.
%C Only digits {0, 1, 2, 3} seem to arise.
%C Numbers (other than 0) that end in zero are excluded. - _N. J. A. Sloane_, Mar 20 2010
%D David Wells, The Dictionary of Curious and Interesting Numbers. London: Penguin Books (1997): p. 124.
%H Reinhard Zumkeller, <a href="/A085305/b085305.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Sq#sqrev">Index entry for sequences related to reversing digits of squares</a>
%F Solutions to rev(x^2) = rev(x)^2.
%e n = 13 is a term because 31^2 = 961 = rev(169) = rev(13^2) = rev(rev(31)^2).
%t rt[x_] := tn[Reverse[IntegerDigits[x]]] Do[s = rt[n^2]; s1=rt[n]^2; If[Equal[s, s1]&&!Equal[Mod[n, 10], 0], Print[{n, s, rt[s1]}]], {n, 0, 1000000}]
%t (* Second program: *)
%t Select[Range[0, 1999], Mod[#,10] != 0 && FromDigits[Reverse[IntegerDigits[#^2]]] == FromDigits[Reverse[IntegerDigits[#]]]^2 &] (* _Alonso del Arte_, Oct 08 2012; corrected by _Jean-François Alcover_, Jan 11 2021 *)
%o a085305 n = a085305_list !! (n-1)
%o a085305_list = 0 : filter (\x -> x `mod` 10 > 0
%o && a004086 (x^2) == (a004086 x)^2) [1..]
%o -- _Reinhard Zumkeller_, Jul 08 2011
%o (Magma) [0] cat [ m: n in [1..1810] | Reverse(Intseq(m^2)) eq Intseq(Seqint(Reverse(Intseq(m)))^2) where m is n+Floor((n-1)/9) ]; // _Bruno Berselli_, Jul 08 2011
%o (PARI) isok(x) = (x==0) || ((x%10) && fromdigits(Vecrev(digits(x^2))) == fromdigits(Vecrev(digits(x)))^2); \\ _Michel Marcus_, Jan 11 2021
%Y Cf. A085306. See A061909 for another version.
%K base,nonn
%O 1,3
%A _Labos Elemer_, Jun 27 2003