login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Runs of zeros in Catalan sequence modulo 3: consecutive occurrences of binomial(2*k,k)/(k+1) == 0 (mod 3).
6

%I #24 Nov 03 2018 18:47:42

%S 3,12,3,39,3,12,3,120,3,12,3,39,3,12,3,363,3,12,3,39,3,12,3,120,3,12,

%T 3,39,3,12,3,1092,3,12,3,39,3,12,3,120,3,12,3,39,3,12,3,363,3,12,3,39,

%U 3,12,3,120,3,12,3,39,3,12,3,3279,3,12,3,39,3,12,3,120,3,12,3,39,3,12,3

%N Runs of zeros in Catalan sequence modulo 3: consecutive occurrences of binomial(2*k,k)/(k+1) == 0 (mod 3).

%C When we prepend a '1' to the Catalan sequence modulo 3, the only nonzero digit strings are {1,1,1,2,2,2} and {2,2,2,1,1,1}; see A085297 for the occurrences of these digit strings.

%H Antti Karttunen, <a href="/A085296/b085296.txt">Table of n, a(n) for n = 1..16384</a>

%H R. Stephan, <a href="/somedcgf.html">Some divide-and-conquer sequences ...</a>

%H R. Stephan, <a href="/A079944/a079944.ps">Table of generating functions</a>

%F a(2*n-1) = 3, a(2*n) = 3*(a(n)+1), for n >= 1.

%F a(n) = (9 * 3^A007814(n) - 1) / 2 - 1. - _Ralf Stephan_, Oct 10 2003

%F From _Johannes W. Meijer_, Feb 11 2013: (Start)

%F a((2*n-1)*2^p) = (3^(p+2)-3)/2, p >= 0 and n >= 1. Observe that a(2^p) = A029858(p+2).

%F a(2^(p+3)*n + 2^(p+2) - 1) = a(2^(p+2)*n + 2^(p+1) - 1) for p >= 0 and n >= 1. (End)

%p nmax:=79: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p) := (3^(p+2)-3)/2 od: od: seq(a(n), n=1..nmax); # _Johannes W. Meijer_, Feb 11 2013

%t Map[If[First@ # == 0, Length@ #, Nothing] &, SplitBy[Array[Mod[CatalanNumber@ #, 3] &, 10^4], # == 0 &]] (* _Michael De Vlieger_, Nov 02 2018 *)

%o (PARI) A085296(n) = if(n%2,3,3*(1+A085296(n/2))); \\ _Antti Karttunen_, Nov 01 2018

%Y Cf. A000108, A039969, A085297, A220466.

%K nonn

%O 1,1

%A _Paul D. Hanna_, Jun 24 2003