|
|
A085293
|
|
Product of Lucas (A000204) and a Pell Companion series (A002203).
|
|
1
|
|
|
2, 18, 56, 238, 902, 3564, 13862, 54238, 211736, 827298, 3231362, 12623044, 49308482, 192613698, 752401496, 2939092798, 11480914982, 44847668844, 175187526662, 684331472398, 2673190054136, 10442227799538, 40790261396162, 159338166024964, 622419427368002
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Convergent a(n+1)/a(n) = ((1+sqrt(5))/2)*(1+sqrt(2)) = (1.618...)*(2.414213...) = 3.9062796... = (1 + sqrt(2) + sqrt(5) + sqrt(10))/2.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (((1+sqrt(5))/2)^n + ((1-sqrt(5))/2)^n) * ((1+sqrt(2))^n + (1-sqrt(2))^n).
a(n) = 2*a(n-1) + 7*a(n-2) + 2*a(n-3) - a(n-4).
G.f.: -2*x*(2*x^3 - 3*x^2 - 7*x - 1) / (x^4 - 2*x^3 - 7*x^2 - 2*x + 1). (End)
E.g.f.: 4*(exp(x/2)*(cosh(x/sqrt(2))*cosh(sqrt(5/2)*x)*cosh(sqrt(5)*x/2)+sinh(x/sqrt(2))*sinh(sqrt(5/2)*x)*sinh(sqrt(5)*x/2))-1). - Stefano Spezia, Aug 25 2019
|
|
PROG
|
(Magma) I:=[2, 18, 56, 238]; [n le 4 select I[n] else 2*Self(n-1) + 7*Self(n-2) + 2*Self(n-3) - Self(n-4):n in [1..30]]; // Marius A. Burtea, Aug 25 2019
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|