login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Product of Lucas (A000204) and a Pell companion series (A001333).
2

%I #17 Aug 03 2015 11:43:41

%S 1,9,28,119,451,1782,6931,27119,105868,413649,1615681,6311522,

%T 24654241,96306849,376200748,1469546399,5740457491,22423834422,

%U 87593763331,342165736199,1336595027068,5221113899769,20395130698081,79669083012482

%N Product of Lucas (A000204) and a Pell companion series (A001333).

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2, 7, 2, -1).

%F a(n) = A000204(n) * A001333(n).

%F a(n) = 2*a(n-1)+7*a(n-2)+2*a(n-3)-a(n-4). G.f.: -x*(2*x^3-3*x^2-7*x-1) / (x^4-2*x^3-7*x^2-2*x+1). - _Colin Barker_, Oct 15 2013

%F 2* A085292(n) = A085293(n).

%t L[0] = 2; L[1] = 1; L[n] = L[n - 1] + L[n - 2]; P[0] = P[1] = 1; P[n_] := P[n] = 2P[n - 1] + P[n - 2]; Table[ L[n]P[n], {n, 1, 24}]

%t With[{nn=30},Rest[LinearRecurrence[{2,1},{1,1},nn]LucasL[Range[0,nn-1]]]] (* _Harvey P. Dale_, Apr 20 2012 *)

%t LinearRecurrence[{2, 7, 2, -1},{1, 9, 28, 119},24] (* _Ray Chandler_, Aug 03 2015 *)

%Y Cf. A085293, A000204, A001333, A002203.

%K nonn,easy

%O 1,2

%A _Gary W. Adamson_, Jun 24 2003

%E Edited and extended by _Robert G. Wilson v_, Jun 24 2003