Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Jul 19 2015 01:37:19
%S 1,2,6,11,23,30,38,62,71,83,110,138,155,182,203,227,263,302,327,383,
%T 435,447,503,542,602,635,707,755,798,878,915,983,1055,1118,1182,1295,
%U 1343,1403,1463,1547,1643,1722,1778,1883,1995,2063,2162,2238,2327
%N Smallest number with exactly n representations as sum of a squarefree number (A005117) and a square (A000290).
%C A085263(a(n))=n and A085263(i)<>n for i<a(n).
%C From _Robert G. Wilson v_, May 17 2014: (Start)
%C First occurrence of k, beginning with 0, in A085263.
%C Conjecture: Just as there is a least integer that can be represented in n ways, so is there a greatest integer.
%C Conjecture: The last occurrence of k, beginning with 0, in A085263: 13, 61, 85, 196, 225, 441, 621, 909, 1089, 1125, 1521, 2025, 2700, 2200, 2925, 3969, 3825, 4500, 5625, 4869, 6084, 8100, 11025, 7425, 9900, 9981, 10584, 11925, 12825, 14400, 13500, 14625, 18081, 18225, 17424, 20925, 22500, 27225, 21825, 25425, 27000, 28224, 27900, 38025, 44100, 33300, 35721, 35325, 39825, 37044, 39600, 40725, 44325, 55125, 50625, 53100, 52200, 54000, 60300, 65025, 63900, 60025, 63504, 64125, 74529, 81225, 77400, 99225, 88200, 76500, 79200, 87525, 90000, 108900, 88425, 91800, 95400, 96300, 100125, 107325, 132300, ..., .
%C Conjecture: For each j, there is a finite number of positive integers that can be represented as the sum of a squarefree number and a square in exactly j ways; e.g., for j=0, only the two integers 1 and 13 cannot be represented as the sum of a squarefree number and a square.
%C The number of integers that can be represented as the sum of a squarefree number and a square in j ways beginning with 0: 2, 9, 19, 27, 38, 36, 57, 63, 62, 74, 94, 86, 101, 112, 123, 113, 139, 140, 146, 170, 155, 202, 167, 196, 204, 213, 213, 215, 233, 232, 255, 249, 276, 261, 278, 310, 321, 300, 302, 336, 347, 325, 325, 350, 375, 367, 413, 393, 377, 384, 427, 435, 440, 447, 434, 472, 445, 476, 470, 518, 482, 499, 510, 542, 519, 550, 506, 553, 591, 572, 626, 586, 582, 585, 598, 623, 623, 656, 595, 697, 641, 672, 702, 689, 733, 696, 661, 718, 738, 757, 755, 739, 820, 734, 717, 834, 792, 811, 780, 831, 867, ..., .
%C (End)
%t f[n_] := f[n] = Count[ SquareFreeQ@# & /@ (n - Range[ Floor[ Sqrt[n]]]^2), True]; t = Array[ f, 10000]; Table[ Position[ t, n, 1, 1], {n, 0, 100}] (* _Robert G. Wilson v_, May 17 2014 *)
%Y Cf. A005117, A000290, A085263.
%K nonn
%O 0,2
%A _Reinhard Zumkeller_, Jun 23 2003
%E Edited by _N. J. A. Sloane_, May 23 2014