Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Feb 04 2019 19:41:30
%S 1,1,2,1,6,1,2,3,2,1,6,1,2,3,2,1,6,1,2,3,4,1,6,7,2,9,2,1,12,1,4,3,2,3,
%T 6,1,2,3,2,1,24,1,2,3,4,1,6,5,2,3,4,1,6,5,2,9,2,1,18,1,6,3,2,3,6,1,2,
%U 9,2,1,6,1,4,3,2,5,6,1,2,3,4,1,12,5,2
%N Least natural number k such that k^2 + n is prime.
%C First values of k and n such that k > 100 are: k=114, n=6041; for k > 200: k=210, n=26171; for k > 300: k=357, n=218084; for k > 400: k=402, n=576239.
%C Additionally, for k > 500: k=585, n=3569114; for k > 600: k=630, n=3802301; for k > 700: k=744, n=24307841; for k > 800: k=855, n=25051934; for k > 900: k=1008, n=54168539. Other cases k > 900: k=945, n=74380946, k=915, n=89992964, k=939, n=118991066. - _Zak Seidov_, May 23 2007
%C It is easily proved that for n > 2, a(n) >= A089128(n+1). The first inequality is a(21) = 4. - _Franklin T. Adams-Watters_, May 16 2018
%H Zak Seidov, <a href="/A085099/b085099.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = sqrt(A059843(n) - n). - _Zak Seidov_, Nov 24 2011
%p a:= proc(n) local d, t; d, t:= 1, n+1; while not
%p isprime(t) do d:= d+2; t:= t+d od; (d+1)/2
%p end:
%p seq(a(n), n=1..100); # _Alois P. Heinz_, Feb 04 2019
%t Table[i = 1; While[! PrimeQ[i^2 + n], i++]; i, {n, 85}] (* _Jayanta Basu_, Apr 24 2013 *)
%o (PARI) a(n)=my(k); while(!isprime(k++^2+n),); k \\ _Charles R Greathouse IV_, Jul 17 2016
%Y Cf. A059843, A200926, A058055, A053000, A089128.
%K nonn,easy
%O 1,3
%A _Jason Earls_, Aug 10 2003