login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Integers reached in A085068.
6

%I #17 Feb 17 2023 07:38:44

%S 0,4,4,4,8,84,8,84,20,12,84,20,16,24,84,20,40,56,24,84,36,28,40,56,32,

%T 148,84,36,68,52,40,56,104,44,148,84,48,120,68,52,72,132,56,104,452,

%U 60,148,84,64,88,120,68,168,404,72,132,100,76,104,452,80,196,148,84,872,116,88

%N Integers reached in A085068.

%H J. C. Lagarias and N. J. A. Sloane, Approximate squaring (<a href="http://neilsloane.com/doc/apsq.pdf">pdf</a>, <a href="http://neilsloane.com/doc/apsq.ps">ps</a>), Experimental Math., 13 (2004), 113-128.

%p a:= proc(n) local i; n; for i do 4/3*ceil(%);

%p if %::integer then return % fi od

%p end:

%p seq(a(n), n=0..100); # _Alois P. Heinz_, Mar 01 2021

%t a[n_] := Module[{k = 4n/3}, While[!IntegerQ[k], k = 4* Ceiling[k]/3]; k];

%t Table[a[n], {n, 0, 100}] (* _Jean-François Alcover_, Feb 17 2023 *)

%o (Python3)

%o from fractions import Fraction

%o def A085071(n):

%o c, x = 0, Fraction(n,1)

%o while x.denominator > 1 or x <= n:

%o x = Fraction(4*x.__ceil__(),3)

%o c += 1

%o return x.numerator # _Chai Wah Wu_, Mar 01 2021

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Aug 11 2003