login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A001511(n+1) + 1.
11

%I #69 Sep 13 2024 06:57:49

%S 2,3,2,4,2,3,2,5,2,3,2,4,2,3,2,6,2,3,2,4,2,3,2,5,2,3,2,4,2,3,2,7,2,3,

%T 2,4,2,3,2,5,2,3,2,4,2,3,2,6,2,3,2,4,2,3,2,5,2,3,2,4,2,3,2,8,2,3,2,4,

%U 2,3,2,5,2,3,2,4,2,3,2,6,2,3,2,4,2,3,2,5,2,3,2,4,2,3,2,7,2,3,2,4,2,3,2,5,2

%N a(n) = A001511(n+1) + 1.

%C Number of divisors of 2n+2 of the form 2^k. - _Giovanni Teofilatto_, Jul 25 2007

%C Number of steps for iteration of map x -> (3/2)*ceiling(x) to reach an integer when started at 2*n+1.

%C Also number of steps for iteration of map x -> (3/2)*floor(x) to reach an integer when started at 2*n+3. - _Benoit Cloitre_, Sep 27 2003

%C The first time that a(n) = e+1 is when n is of the form 2^e - 1. - _Robert G. Wilson v_, Sep 28 2003

%C Let 2^k(n) = largest power of 2 dividing tangent number A000182(n). Then a(n-1) = 2*n - k(n). - _Yasutoshi Kohmoto_, Dec 23 2006

%C a(n) is the number of integers generated by b(i+1) = (3+2n)*(b(i) + b(i-1))/2, following these two initial values, b(0) = b(1) = 1. Thereafter only non-integers are generated. - _Richard R. Forberg_, Nov 09 2014

%C a(n) is the 2-adic valuation of 4*n+4, which is equal to the number of trailing 1-bits of 4*n+3 in binary. - _Ruud H.G. van Tol_, Sep 11 2023

%H Antti Karttunen, <a href="/A085058/b085058.txt">Table of n, a(n) for n = 0..16383</a>

%H J. C. Lagarias and N. J. A. Sloane, <a href="http://projecteuclid.org/euclid.em/1086894093">Approximate squaring</a>, Experimental Math., 13 (2004), 113-128.

%F a(n) = A007814(3^(n+1) - (-1)^(n+1)) = A007814(A105723(n+1)). - _Reinhard Zumkeller_, Apr 18 2005

%F a(n) = A001511(n+1) + 1 = A001511(2*n+2). - _Ray Chandler_, Jul 29 2007

%F a(n) = A007814(5^(n+1) - 1). - _Ivan Neretin_, Jan 15 2016

%F a(n) = A007814(4*(n+1)) = A007814(n+1) + 2. - _Ruud H.G. van Tol_, Sep 11 2023

%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3. - _Amiram Eldar_, Sep 13 2024

%p f := x->(3/2)*ceil(x); g := proc(n) local t1,c; global f; t1 := f(n); c := 1; while not type(t1, 'integer') do c := c+1; t1 := f(t1); od; RETURN([c,t1]); end;

%p a := n -> A001511(n+1) + 1: A001511 := n -> padic[ordp](2*n, 2): seq(a(n), n=0..104); # _Johannes W. Meijer_, Dec 22 2012

%t g = 3 Ceiling[ # ]/2 &; f[n_?OddQ] := Length @ NestWhileList[ g, g[n], !IntegerQ[ # ] & ]; Table[ f[n], {n, 1, 210, 2}]

%o (PARI) A085058(n)=if(n<0,0,c=2*n+7/2; x=0; while(frac(c)>0,c=3/2*floor(c); x++); x) \\ _Benoit Cloitre_, Sep 27 2003

%o (PARI) A085058(n)=if(n<0,0,c=(2*n+1)*3/2; x=1; while(frac(c)>0,c=3/2*ceil(c); x++); x) \\ _Benoit Cloitre_, Sep 27 2003

%o (PARI) a(n) = valuation(n+1,2)+2; \\ _Michel Marcus_, Jan 15 2016

%o (Magma) [Valuation(n+1, 2)+2: n in [0..100]]; // _Vincenzo Librandi_, Jan 16 2016

%o (Python)

%o def A085058(n): return (~(n+1) & n).bit_length()+2 # _Chai Wah Wu_, Apr 14 2023

%Y Cf. A001511, A085060, A007814, A105723, A000182.

%K nonn,easy

%O 0,1

%A _N. J. A. Sloane_, Aug 11 2003

%E Edited by _Franklin T. Adams-Watters_, Dec 09 2013