login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Palindromes such that the product of the digits + 1 is prime.
2

%I #19 Aug 22 2022 19:25:26

%S 1,2,4,6,11,22,44,66,111,121,141,161,212,232,242,272,292,323,343,383,

%T 414,464,474,545,565,616,626,636,656,747,838,848,878,898,929,969,1111,

%U 1221,1441,1661,2112,2222,2332,2552,2772,2882,3223,3883,4114,4444,4554

%N Palindromes such that the product of the digits + 1 is prime.

%H J.W.L. (Jan) Eerland, <a href="/A084979/b084979.txt">Table of n, a(n) for n = 1..10928</a>

%F a(n) >> n^k, where k = log_3(10) = 2.0959.... - _Charles R Greathouse IV_, Aug 02 2010

%e 383 is a term since 3*8*3 = 72, 72+1 = 73 is prime.

%t Select[ Range[4663], FromDigits[ Reverse[ IntegerDigits[ # ]]] == # && PrimeQ[1 + Times @@ IntegerDigits[ # ]] & ]

%t Parallelize[While[True,If[PalindromeQ[n]&&PrimeQ[1+Product[Part[IntegerDigits[n],k],{k,1,Length[IntegerDigits[n]]}]],Print[n]];n++];n] (* _J.W.L. (Jan) Eerland_, Dec 27 2021 *)

%o (Python)

%o from math import prod

%o from sympy import isprime

%o from itertools import count, islice, product

%o def cond(n): return isprime(prod(map(int, str(n))) + 1)

%o def pals(): # generator of palindromes as strings

%o digits = "0123456789"

%o for d in count(1):

%o for p in product(digits, repeat=d//2):

%o if d > 1 and p[0] == "0": continue

%o left = "".join(p); right = left[::-1]

%o for mid in [[""], digits][d%2]:

%o yield int(left + mid + right)

%o def agen(): yield from filter(cond, pals())

%o print(list(islice(agen(), 51))) # _Michael S. Branicky_, Aug 22 2022

%Y Cf. A081988.

%K nonn,base

%O 1,2

%A Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jun 21 2003

%E Edited, corrected and extended by _Robert G. Wilson v_, Jun 21 2003

%E Formula by _Charles R Greathouse IV_, Aug 02 2010