login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangular array, read by rows: T(n,k) = denominator of arithmetic derivative of k/n, 1<=k<=n.
3

%I #7 Sep 26 2021 09:05:49

%S 1,4,1,9,9,1,4,4,2,1,25,25,25,25,1,36,9,4,9,36,1,49,49,49,49,49,49,1,

%T 16,4,16,4,16,2,16,1,27,27,9,27,27,9,27,27,1,100,25,100,25,4,25,100,

%U 25,100,1,121,121,121,121,121,121,121,121,121,121,1,9,36,4,9,36,4,36

%N Triangular array, read by rows: T(n,k) = denominator of arithmetic derivative of k/n, 1<=k<=n.

%C Arithmetic derivative of k/n = (n*A003415(k)-k*A003415(n))/n^2;

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/QuotientRule.html">Quotient Rule.</a>

%e ............................. 0

%e ....................... -1/4 ..... 0

%e ................ -1/9 ...... 1/9 ...... 0

%e .... ...... -1/4 ..... -1/4 .... -1/2 ...... 0

%e .. .. -1/25 .... 3/25 ..... 2/25 ..... 16/25 .... 0

%e -5/36 ..... -1/9 ..... -1/4 ..... 1/9 .... -19/36 .... 0.

%t ader[n_Integer] := ader[n] = Switch[n, 0|1, 0, _, If[PrimeQ[n], 1, Sum[Module[{p, e}, {p, e} = pe; n e/p], {pe, FactorInteger[n]}]]];

%t ader[Rational[n_, k_]] := (ader[n] k - ader[k] n)/k^2;

%t T[n_, k_] := ader[k/n] // Denominator;

%t Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Sep 26 2021 *)

%Y Numerator=A084886, A084885.

%K nonn,tabl

%O 1,2

%A _Reinhard Zumkeller_, Jun 10 2003