login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084879
Number of (k,m,n)-multiantichains of multisets with k=3 and m=2.
1
1, 3, 18, 189, 2106, 22113, 220158, 2114829, 19853586, 183662073, 1683014598, 15327998469, 139038783066, 1257874611633, 11360039237838, 102475402586109, 923689049088546, 8321664384098793, 74945758272961878, 674816500839877749
OFFSET
0,2
COMMENTS
By a (k,m,n)-multiantichain of multisets we mean an m-multiantichain of k-bounded multisets on an n-set. The elements of a multiantichain could have the multiplicities greater than 1. A multiset is called k-bounded if every its element has the multiplicity not greater than k-1.
LINKS
Goran Kilibarda and Vladeta Jovovic, Antichains of Multisets, J. Integer Seqs., Vol. 7, 2004.
FORMULA
a(n) = (9^n - 2*6^n + 3*3^n)/2.
G.f.: ( -1 + 15*x - 63*x^2 ) / ( (6*x-1)*(3*x-1)*(9*x-1) ). - R. J. Mathar, Jul 08 2011
E.g.f.: (exp(9*x) - 2*exp(6*x) + 3*exp(3*x))/2. - G. C. Greubel, Oct 08 2017
MATHEMATICA
Table[(9^n - 2*6^n + 3*3^n)/2, {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
PROG
(PARI) for(n=0, 50, print1((9^n - 2*6^n + 3*3^n)/2, ", ")) \\ G. C. Greubel, Oct 08 2017
(Magma) [(9^n - 2*6^n + 3*3^n)/2: n in [0..50]]; // G. C. Greubel, Oct 08 2017
KEYWORD
nonn
AUTHOR
Goran Kilibarda, Vladeta Jovovic, Jun 10 2003
STATUS
approved