|
|
A084870
|
|
Number of 3-multiantichains of an n-set.
|
|
2
|
|
|
1, 2, 6, 28, 190, 1692, 16766, 166028, 1586430, 14580412, 129654526, 1123451628, 9544185470, 79881877532, 661135445886, 5425962250828, 44250287565310, 359161631645052, 2904756409742846, 23429320590259628, 188594431902253950
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..1000
Goran Kilibarda and Vladeta Jovovic, Antichains of Multisets, J. Integer Seqs., Vol. 7, 2004.
Index entries for linear recurrences with constant coefficients, signature (28,-315,1820,-5684,9072,-5760).
|
|
FORMULA
|
a(n) = (1/3!)*(8^n - 6*6^n + 6*5^n + 9*4^n - 18*3^n + 14*2^n).
G.f.: ( 1-26*x+265*x^2-1330*x^3+3340*x^4-3432*x^5 ) / ( (6*x-1)*(4*x-1)*(3*x-1)*(2*x-1)*(8*x-1)*(5*x-1) ). - R. J. Mathar, Jul 08 2011
|
|
MATHEMATICA
|
Table[(8^n - 6*6^n + 6*5^n + 9*4^n - 18*3^n + 14*2^n)/6, {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
|
|
PROG
|
(PARI) for(n=0, 50, print1((8^n - 6*6^n + 6*5^n + 9*4^n - 18*3^n + 14*2^n)/6, ", ")) \\ G. C. Greubel, Oct 08 2017
(MAGMA) [(8^n - 6*6^n + 6*5^n + 9*4^n - 18*3^n + 14*2^n)/6: n in [0..50]]; // G. C. Greubel, Oct 08 2017
|
|
CROSSREFS
|
Cf. A016269, A047707, A051112-A051118, A084869-A084883.
Sequence in context: A196555 A084262 A231621 * A111342 A008964 A058128
Adjacent sequences: A084867 A084868 A084869 * A084871 A084872 A084873
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Goran Kilibarda, Vladeta Jovovic, Jun 10 2003
|
|
STATUS
|
approved
|
|
|
|