login
Smallest integers that satisfy sum(n>0, mu( a(n) )/a(n))=0 by requiring that the absolute value of the successive partial sums are monotonically decreasing in magnitude, where a(1)=1 and a(n+1)>a(n) for n>0.
1

%I #4 Mar 30 2012 18:36:38

%S 1,2,3,5,21,37,46,59,65,70,74,78,82,83,85,89,93,97,106,114,115,127,

%T 141,149,158,163,177,190,194,197,201,211,221,223,226,229,235,246,253,

%U 257,259,263,274,282,287,293,295,307,321,331,341,345,355,366,371,373,377

%N Smallest integers that satisfy sum(n>0, mu( a(n) )/a(n))=0 by requiring that the absolute value of the successive partial sums are monotonically decreasing in magnitude, where a(1)=1 and a(n+1)>a(n) for n>0.

%C Since sum(n>0,mu(n)/n)=0, this sequence gives the subset of smallest integers that satisfy this sum.

%o (PARI) S=0; a=0; w=2; for(n=1,100,b=a+1; while(abs(S+moebius(b)/b)>=w,b++); S=S+moebius(b)/b; w=abs(S); a=b; print1(b,","))

%Y Cf. A084839.

%K nonn

%O 1,2

%A _Paul D. Hanna_, Jun 06 2003