login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Least integer such that x^(n+1)/(ceiling(x^n) + a(n)) monotonically decreases to 1, where x=2.30553839092543...
1

%I #10 Jun 23 2019 16:59:01

%S 1,2,6,15,36,84,195,451,1041,2402,5539,12772,29447,67893,156531,

%T 360889,832045,1918313,4422746,10196812,23509143,54201233,124963024,

%U 288107051,664241868,1531435129,3530782484,8140354569,18767899975,43270113911

%N Least integer such that x^(n+1)/(ceiling(x^n) + a(n)) monotonically decreases to 1, where x=2.30553839092543...

%C x=2.30553839092543... is the unique value at which the limit is 1: lim_{n->infinity} x^(n+1)/(ceiling(x^n) + a(n)) = 1; a(n) ~ (x-1)*x^n.

%F a(0)=1, a(n+1) = ceiling( x*a(n) + x*ceiling(x^n) - ceiling(x^(n+1)) ), where x=2.30553839092543...

%K nonn

%O 0,2

%A _Paul D. Hanna_, Jun 06 2003