login
Least integer such that e^n/(ceiling(e^n) + a(n)) monotonically decreases.
0

%I #8 Jun 23 2019 02:30:08

%S 1,3,9,26,73,199,542,1475,4011,10903,29640,80571,219017,595350,

%T 1618331,4399082,11957946,32505069,88357939,240181783,652881776,

%U 1774716669,4824180073,13113481032,35646137200,96896247006,263391307484

%N Least integer such that e^n/(ceiling(e^n) + a(n)) monotonically decreases.

%C Lim_{n->infinity} e^n/(ceiling(e^n) + a(n)) = 0.42631385811... = 1/(1+c), where a(n) ~ c*e^n, c=1.34568963915...

%F a(0)=1, a(n+1) = ceiling( e*a(n) + e*ceiling(e^n) - ceiling(e^(n+1)) ), e=2.71828...

%Y Cf. A084798.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Jun 14 2003