Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #56 May 31 2023 09:11:24
%S 1,2,14,68,406,2332,13964,83848,509926,3118892,19194724,118654648,
%T 736365436,4584612632,28623792344,179142212368,1123532958086,
%U 7059622447052,44431918660724,280059644507608,1767597777222676
%N Coefficients of 1/(1-4x-16x^2)^(1/2); also, a(n) is the central coefficient of (1+2x+5x^2)^n.
%C Also number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), U can have 5 colors and H can have 2 colors. - _N-E. Fahssi_, Mar 30 2008
%C Self-convolution of a(n)/4^n gives Fibonacci numbers A000045(n+1). - _Vladimir Reshetnikov_, Oct 09 2016
%C Let A(x) be the g.f. and f(x) := x * A(-x/4) = x / sqrt(1 + x - x^2) = x - x^2*1/2 + x^3*7/8 - ..., then f() maps the unit interval to itself monotonically with 0 an attractive fixed point. Let b(n, t) := 1/(n/2 + (t-c_0) - 5/4*log(n + 2*(t-c_1) - 5/2*log(n + 2*(t-c_2) - 5/2*log(n + 2*t ...)))), where c_0=0, c_1=1, c_2=121/120, ..., then b(n+1, t) = f(b(n, t)). - _Michael Somos_, Sep 30 2017
%H Vincenzo Librandi, <a href="/A084770/b084770.txt">Table of n, a(n) for n = 0..200</a>
%H Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL22/Szalay/szalay42.html">Diagonal Sums in the Pascal Pyramid, II: Applications</a>, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
%H Tony D. Noe, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Noe/noe35.html">On the Divisibility of Generalized Central Trinomial Coefficients</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
%H Michael Z. Spivey and Laura L. Steil, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Spivey/spivey7.html">The k-Binomial Transforms and the Hankel Transform</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
%F E.g.f.: exp(2*x)*BesselI(0, 2*sqrt(5)*x). More generally, e.g.f.: exp(b*x)*BesselI(0, 2*sqrt(c)*x) yields central coefficients of (1+b*x+c*x^2)^n. - _Vladeta Jovovic_, Mar 21 2004
%F a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(2(n-k), n)*4^k. - _Paul Barry_, Sep 08 2004
%F Define Q(n, x) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(2(n-k), n)*x^(n-2k). A084770(n) is 2^n*Q(n, 1/2). - _Paul Barry_, Sep 08 2004
%F Recurrence: n*a(n) = 2*(2*n-1)*a(n-1) + 16*(n-1)*a(n-2). - _Vaclav Kotesovec_, Oct 14 2012
%F a(n) ~ sqrt(50+10*sqrt(5))*(2+2*sqrt(5))^n/(10*sqrt(Pi*n)). - _Vaclav Kotesovec_, Oct 14 2012
%F G.f.: G(0), where G(k)= 1 + 4*x*(1+4*x)*(4*k+1)/(4*k+2 - 4*x*(1+4*x)*(4*k+2)*(4*k+3)/(4*x*(1+4*x)*(4*k+3) + 4*(k+1)/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, Jun 17 2013
%F a(n) = 2^n * hypergeom([(1-n)/2, -n/2], [1], 5). - _Vladimir Reshetnikov_, Oct 10 2016
%F a(n) = (4/i)^(2*n+1) * a(-1-n), and 0 = a(n)*(+256*a(n+1) + 96*a(n+2) - 32*a(n+3)) + a(n+1)*(+32*a(n+1) + 16*a(n+2) - 6*a(n+3)) + a(n+2)*(-2*a(n+2) + a(n+3)) for all n in Z. - _Michael Somos_, Sep 30 2017
%e G.f.: 1/sqrt(1-2*b*x+(b^2-4*c)*x^2) yields central coefficients of (1+b*x+c*x^2)^n.
%e G.f. = 1 + 2*x + 14*x^2 + 68*x^3 + 406*x^4 + 2332*x^5 + 13964*x^6 + 83848*x^7 + ...
%t Table[n!*SeriesCoefficient[E^(2*x)*BesselI[0,2*Sqrt[5]*x],{x,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Oct 14 2012 *)
%t Table[Abs[LegendreP[n, I/2]] 4^n, {n, 0, 20}] (* _Vladimir Reshetnikov_, Oct 22 2015 *)
%t a[n_]:= (4/I)^n LegendreP[n, I/2]; (* _Michael Somos_, Sep 30 2017 *)
%o (PARI) for(n=0,30,t=polcoeff((1+2*x+5*x^2)^n,n,x); print1(t","))
%o (PARI) a(n) = 4^n*abs(pollegendre(n, I/2)) \\ after 2nd Mathematica; _Michel Marcus_, Oct 22 2015
%o (PARI) {a(n) = (4/I)^n * pollegendre(n, I/2)}; /* _Michael Somos_, Sep 30 2017 */
%o (Magma) [n le 2 select 2^(n-1) else (2*(2*n-3)*Self(n-1) + 16*(n-2)*Self(n-2))/(n-1): n in [1..30]]; // _G. C. Greubel_, May 30 2023
%o (SageMath) [(-4*i)^n*gen_legendre_P(n, 0, i/2) for n in range(41)] # _G. C. Greubel_, May 30 2023
%K nonn
%O 0,2
%A _Paul D. Hanna_, Jun 10 2003