login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084697
a(1) = 2; for n >= 1, k>=1, a(n+1) = a(n) + k*n is the smallest such prime.
3
2, 3, 5, 11, 19, 29, 41, 83, 107, 179, 199, 331, 367, 419, 433, 463, 479, 547, 601, 677, 757, 883, 971, 1063, 1087, 1187, 1213, 1321, 1433, 1549, 1579, 1889, 2017, 2083, 2287, 2357, 2393, 2467, 2543, 2621, 2741, 3643, 3727, 4157, 4201, 4561, 5021, 5209
OFFSET
1,1
COMMENTS
Successive differences are 1,2,6,8,10,12,42,24,72,20,132,36,52,14,30,16,... and the n-th term is a multiple of n.
Conjecture: a(n) ~ c n^2 log(n) for some positive constant c. - Robert Israel, Oct 26 2015
MAPLE
a[1]:= 2: a[2]:= 3:
for n from 2 to 1000 do
if n::odd then delta:= 2*n
else delta:= n
fi:
for q from a[n] + delta by delta while not isprime(q) do od:
a[n+1]:= q
od:
seq(a[i], i=1..1000); # Robert Israel, Oct 26 2015
MATHEMATICA
nxt[{n_, a_}]:=Module[{k=1}, While[!PrimeQ[a+k*n], k++]; {n+1, a+k*n}]; Transpose[NestList[nxt, {1, 2}, 50]][[2]] (* Harvey P. Dale, Apr 11 2014 *)
PROG
(PARI) lista(nn) = {print1(a=2, ", "); for (n=1, nn, k=1; while (!isprime(na=a+k*n), k++); a = na; print1(a, ", "); ); } \\ Michel Marcus, Oct 21 2015
CROSSREFS
Sequence in context: A087582 A235661 A070865 * A037082 A084573 A155954
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Jun 05 2003
EXTENSIONS
More terms from David Wasserman, Dec 30 2004
Definition corrected by Zak Seidov, Apr 24 2015
STATUS
approved