login
Continued fraction expansion of (negative of) Kinkelin constant.
1

%I #11 Jun 16 2016 23:27:23

%S 0,6,22,7,2,1,1,1,1,5,1,7,1,2,1,3,2,4,1,1,1,1,1,1,110,8,3,1,1,2,1,2,7,

%T 19,4,3,4,11,1,3,2,9,1,1,1,1,6,1,1,1,2,1,1,1,1,2,14,2,6,1,1,3,3,2,1,1,

%U 1,2,1,14,1,1,1,2,1,1,1,1,2,6,1,1,2,8,1,4,1,1,1,6,2,1,1,1,10,3,1,1,1,21,11

%N Continued fraction expansion of (negative of) Kinkelin constant.

%H G. Almkvist, <a href="https://projecteuclid.org/euclid.em/1047674152">Asymptotic formulas and generalized Dedekind sums</a>, Exper. Math., 7 (No. 4, 1998), pp. 343-359.

%F Zeta(1, -1). Almkvist gives many formulas.

%e -.16542114370045...

%o (PARI) contfrac(-zeta'(-1)) \\ _Michel Marcus_, Dec 08 2014

%Y Cf. A084448.

%K nonn,cofr

%O 0,2

%A _N. J. A. Sloane_, Jul 01 2003