Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Feb 25 2020 08:14:01
%S 1,2,10,42,182,790,3432,14914,64814,281680,1224182,5320310,23122148,
%T 100489226,436727814,1898026232,8248853134,35849651070,155803171860,
%U 677123141810,2942788286798,12789406189672,55582969192486,241564496305670,1049843265359828
%N Number of tilings of a 4 X 2n rectangle with L tetrominoes.
%H Colin Barker, <a href="/A084480/b084480.txt">Table of n, a(n) for n = 0..1000</a>
%H C. Moore, <a href="http://arXiv.org/abs/math.CO/9905012">[math/9905012] Some Polyomino Tilings of the Plane</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (4,2,-1,-4,-4,-2).
%F G.f.: (1-2*z-z^3) / (1-4*z-2*z^2+z^3+4*z^4+4*z^5+2*z^6).
%F a(n) = 4*a(n-1) + 2*a(n-2) - a(n-3) - 4*a(n-4) - 4*a(n-5) - 2*a(n-6) for n>5. - _Colin Barker_, Mar 28 2017
%t LinearRecurrence[{4, 2, -1, -4, -4, -2}, {1, 2, 10, 42, 182, 790}, 25] (* _Jean-François Alcover_, Feb 25 2020 *)
%o (PARI) Vec((1 - 2*x - x^3) / (1 - 4*x - 2*x^2 + x^3 + 4*x^4 + 4*x^5 + 2*x^6) + O(x^30)) \\ _Colin Barker_, Mar 28 2017
%Y Cf. A084478, A084479, A084477, A084481, A174248, A226322, A232497.
%K nonn,easy
%O 0,2
%A _Ralf Stephan_, May 27 2003
%E Inserted a(0)=1 by _Alois P. Heinz_, May 01 2013