

A084385


a(1) = 1; a(n+1) is the smallest number not occurring earlier and coprime to sum(j=1,n, a(j)).


3



1, 2, 4, 3, 7, 5, 9, 6, 8, 11, 13, 10, 12, 15, 17, 14, 16, 19, 21, 18, 20, 23, 25, 22, 24, 27, 29, 26, 28, 31, 33, 30, 32, 35, 37, 34, 36, 39, 41, 38, 40, 43, 45, 42, 44, 47, 49, 46, 48, 51, 53, 50, 52, 55, 57, 54, 56, 59, 61, 58, 60, 63, 65, 62, 64, 67, 69, 66, 68, 71, 73, 70
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Rearrangement of the positive integers.


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Index entries for sequences that are permutations of the natural numbers


FORMULA

For n > 6: a(n) = n  2 for (n mod 4) = 0, a(n) = n  1 for (n mod 4) = 1, a(n) = n + 1 for (n mod 4) = 2, a(n) = n + 2 for (n mod 4) = 3.  Klaus Brockhaus, Nov 30 2003.


EXAMPLE

1+2+4 = 7, 3 is the smallest number not occurring earlier and coprime to 7, hence a(4) = 3.


PROG

(PARI) used(k, v)=b=0; j=1; while(b<1&&j<=length(v), if(v[j]==k, b=1, j++)); b
{print1(s=1, ", "); v=[s]; for(n=1, 72, j=1; k=2; while(used(k, v)gcd(k, s)>1, k++); v=concat(v, k); s=s+k; print1(k, ", "))}
(PARI) {print1(1, ", ", 2, ", ", 4, ", ", 3, ", ", 7, ", ", 5, ", "); for(n=7, 73, m=n%4; d=(if(m==0, 2, if(m==1, 1, if(m==2, 1, 2)))); print1(n+d, ", "))}
(Haskell)
import Data.List (delete)
a084385 n = a084385_list !! (n1)
a084385_list = 1 : f [2..] 1 where
f xs s = g xs where
g (y:ys) = if gcd s y == 1 then y : f (delete y xs) (s + y) else g ys
 Reinhard Zumkeller, Aug 15 2015


CROSSREFS

Partial sums are in A111244. Cf. A064413.
Cf. A261351 (inverse).
Sequence in context: A215673 A120619 A346298 * A073885 A256283 A257465
Adjacent sequences: A084382 A084383 A084384 * A084386 A084387 A084388


KEYWORD

nonn


AUTHOR

Amarnath Murthy, May 29 2003


EXTENSIONS

Edited, corrected and extended by Klaus Brockhaus, May 29 2003


STATUS

approved



