login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(0)=0, a(1)=1; a(n) = 13*a(n-1) - 11*a(n-2).
0

%I #32 Jan 01 2024 11:18:05

%S 0,1,13,158,1911,23105,279344,3377317,40832337,493669894,5968552915,

%T 72160819061,872436565728,10547906344793,127525980259301,

%U 1541810773578190,18640754273664159,225369887048273977

%N a(0)=0, a(1)=1; a(n) = 13*a(n-1) - 11*a(n-2).

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (13,-11).

%F a(n) = (1/5)*Sum_{k=0..n} binomial(n, k)*F(5*k) where F(k) denotes the k-th Fibonacci number.

%F G.f.: x / (11*x^2-13*x+1). - _Colin Barker_, Jun 26 2013

%t Join[{a=0,b=1},Table[c=13*b-11*a;a=b;b=c,{n,60}]] (* _Vladimir Joseph Stephan Orlovsky_, Jan 21 2011 *)

%o (PARI) a(n)=(1/5)*sum(k=0,n,binomial(n,k)*fibonacci(5*k));

%o (Sage) [lucas_number1(n,13,11) for n in range(0, 18)] # _Zerinvary Lajos_, Apr 29 2009

%Y Cf. A030191.

%K nonn,easy

%O 0,3

%A _Benoit Cloitre_, Jun 21 2003