login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Least common multiple of {d-1: d > 1 and d divides n}.
6

%I #26 Jun 25 2022 21:53:38

%S 1,1,2,3,4,10,6,21,8,36,10,330,12,78,28,105,16,680,18,684,60,210,22,

%T 53130,24,300,104,702,28,36540,30,3255,160,528,204,157080,36,666,228,

%U 62244,40,31980,42,9030,616,990,46,2497110,48,3528,400,5100,52,468520

%N Least common multiple of {d-1: d > 1 and d divides n}.

%C Considering the set of divisors > 1 of n reduced by 1, a(n) is the smallest number whose divisors contain this set;

%C a(n) < n iff n=p^k, p prime and 1 <= k <= 2: a(A001248(n)) < A001248(n), a(A000430(n)) < A000430(n), a(A080257(n))> A080257(n);

%C a(n) is odd iff n=2^k.

%H Carl R. White, <a href="/A084190/b084190.txt">Table of n, a(n) for n = 1..10000</a>

%e n=35: divisors > 1 of 35 = {5,7,35}, a(35) = lcm(4,6,34) = 204;

%e n=37: divisors > 1 of 37 = {37}, a(37) = lcm(36) = 36.

%t Join[{1}, Table[LCM @@ (Rest[Divisors[n]] - 1), {n, 2, 100}]] (* _T. D. Noe_, Apr 25 2012 *)

%o (PARI) a(n)=if(n>2,lcm(apply(k->k-1,vecextract(divisors(n),"2.."))),1) \\ _Charles R Greathouse IV_, Apr 25 2012

%o (Haskell)

%o a084190 1 = 1

%o a084190 n = foldl1 lcm $ map (subtract 1) $ tail $ a027750_row' n

%o -- _Reinhard Zumkeller_, May 08 2012

%o (Python)

%o from math import lcm

%o from sympy import divisors

%o def A084190(n): return lcm(*(d-1 for d in divisors(n,generator=True) if d > 1)) # _Chai Wah Wu_, Jun 25 2022

%Y Cf. A084191(n) = a(a(n)), A007955.

%Y Cf. A027750.

%Y Cf. A258409.

%K nonn

%O 1,3

%A _Reinhard Zumkeller_, May 18 2003

%E a(45) was erroneously split into 61 and 6; repaired by _Carl R. White_, Apr 25 2012