Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #60 Dec 03 2024 08:26:44
%S 0,1,5,30,174,1015,5915,34476,200940,1171165,6826049,39785130,
%T 231884730,1351523251,7877254775,45912005400,267594777624,
%U 1559656660345,9090345184445,52982414446326,308804141493510,1799842434514735,10490250465594899,61141660359054660,356359711688733060
%N a(n) = A000129(n)*A000129(n+1)/2.
%C May be called Pell triangles.
%H Vincenzo Librandi, <a href="/A084158/b084158.txt">Table of n, a(n) for n = 0..500</a>
%H Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Barry4/barry64.html">Symmetric Third-Order Recurring Sequences, Chebyshev Polynomials, and Riordan Arrays</a>, JIS 12 (2009) 09.8.6.
%H S. Falcon, <a href="https://www.researchgate.net/publication/298789400_On_the_Sequences_of_Products_of_Two_k-Fibonacci_Numbers">On the Sequences of Products of Two k-Fibonacci Numbers</a>, American Review of Mathematics and Statistics, March 2014, Vol. 2, No. 1, pp. 111-120.
%H Ronald Orozco López, <a href="https://arxiv.org/abs/2408.08943">Generating Functions of Generalized Simplicial Polytopic Numbers and (s,t)-Derivatives of Partial Theta Function</a>, arXiv:2408.08943 [math.CO], 2024. See p. 11.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5,5,-1).
%F a(n) = ((sqrt(2)+1)^(2*n+1) - (sqrt(2)-1)^(2*n+1) - 2*(-1)^n)/16.
%F a(n) = 5*a(n-1) + 5*a(n-2) - a(n-3). - _Mohamed Bouhamida_, Sep 02 2006; corrected by _Antonio Alberto Olivares_, Mar 29 2008
%F a(n) = (-1/8)*(-1)^n + (( sqrt(2)+1)/16)*(3+2*sqrt(2))^n + ((-sqrt(2)+1)/16)*(3-2*sqrt(2))^n. - _Antonio Alberto Olivares_, Mar 30 2008
%F sqrt(a(n) - a(n-1)) = A000129(n). - _Antonio Alberto Olivares_, Mar 30 2008
%F O.g.f.: x/((1+x)(1-6*x+x^2)). - _R. J. Mathar_, May 18 2008
%F a(n) = A041011(n)*A041011(n+1). - _R. K. Guy_, May 18 2008
%F From _Mohamed Bouhamida_, Aug 30 2008: (Start)
%F a(n) = 6*a(n-1) - a(n-2) - (-1)^n.
%F a(n) = 7*(a(n-1) - a(n-2)) + a(n-3) - 2*(-1)^n. (End)
%F In general, for n>k+1, a(n+k) = A003499(k+1)*a(n-1) - a(n-k-2) - (-1)^n A000129(k+1)^2. - _Charlie Marion_, Jan 04 2012
%F For n>0, a(2n-1)*a(2n+1) = oblong(a(2n)); a(2n)*a(2n+2) = oblong(a(2n+1)-1). - _Charlie Marion_, Jan 09 2012
%F a(n) = A046729(n)/4. - _Wolfdieter Lang_, Mar 07 2012
%F a(n) = sum of squares of first n Pell numbers A000129 (A079291). - _N. J. A. Sloane_, Jun 18 2012
%F a(n) = (A002315(n) - (-1)^n)/8. - _Adam Mohamed_, Sep 05 2024
%F Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(sqrt(2)-1) (A163960). - _Amiram Eldar_, Dec 02 2024
%p with(combinat): a:=n->fibonacci(n,2)*fibonacci(n-1,2)/2: seq(a(n), n=1..22); # _Zerinvary Lajos_, Apr 04 2008
%t LinearRecurrence[{5,5,-1},{0,1,5},30] (* _Harvey P. Dale_, Sep 07 2011 *)
%o (Magma) [Floor(((Sqrt(2)+1)^(2*n+1)-(Sqrt(2)-1)^(2*n+1)-2*(-1)^n)/16): n in [0..35]]; // _Vincenzo Librandi_, Jul 05 2011
%o (PARI) Pell(n)=([2, 1; 1, 0]^n)[2, 1];
%o a(n)=Pell(n)*Pell(n+1)/2 \\ _Charles R Greathouse IV_, Mar 21 2016
%o (PARI) a(n)=([0,1,0; 0,0,1; -1,5,5]^n*[0;1;5])[1,1] \\ _Charles R Greathouse IV_, Mar 21 2016
%o (SageMath) [(lucas_number2(2*n+1,2,-1) -2*(-1)^n)/16 for n in (0..30)] # _G. C. Greubel_, Aug 18 2022
%Y Cf. A000129, A001652, A001654, A002203, A002315, A003499.
%Y Cf. A041011, A046729, A079291, A084159, A084175, A163960.
%K easy,nonn
%O 0,3
%A _Paul Barry_, May 18 2003