login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominators of terms in the Pippenger product.
2

%I #20 Oct 13 2022 15:13:28

%S 1,9,1225,1656369,44604646326241,99356606870240615081050533361,

%T 198013920418138539775713504657052494285395323276110397576890625

%N Denominators of terms in the Pippenger product.

%H G. C. Greubel, <a href="/A084149/b084149.txt">Table of n, a(n) for n = 1..10</a>

%H Nicholas Pippenger, <a href="https://www.jstor.org/stable/2321215">An infinite product for e</a>, The American Mathematical Monthly, Vol. 87, No. 5 (1980), p. 391.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PippengerProduct.html">Pippenger Product</a>.

%F a(n) = denominator(((2^(n-1)-1)!!*(2^n)!!/((2^(n-1))!!*(2^n-1)!!))^2/2). - _Amiram Eldar_, Apr 10 2022

%F a(n) = denominator( 2^(2^n -1)*((2^(n-1))!)^6 / (((2^n)!)^2 * ((2^(n-2))!)^4) ), with a(1) = 1. - _G. C. Greubel_, Oct 13 2022

%t a[n_] := Denominator[((2^(n - 1) - 1)!!*(2^n)!!/((2^(n - 1))!!*(2^n - 1)!!))^2/2]; Array[a, 7] (* _Amiram Eldar_, Apr 10 2022 *)

%o (Magma)

%o F:=Factorial;

%o A084149:= func< n | n eq 1 select 1 else Round(Denominator( 2^(2^n -1)*(F(2^(n-1)))^6 / ((F(2^n))^2 * (F(2^(n-2)))^4) )) >;

%o [A084149(n): n in [1..10]]; // _G. C. Greubel_, Oct 13 2022

%o (SageMath)

%o f=factorial

%o def A084149(n): return 1 if (n==1) else denominator( 2^(2^n -1)*(f(2^(n-1)))^6 / ((f(2^n))^2 * (f(2^(n-2)))^4) )

%o [A084149(n) for n in range(1,10)] # _G. C. Greubel_, Oct 13 2022

%Y Cf. A084148 (numerators).

%K frac,nonn

%O 1,2

%A _Eric W. Weisstein_, May 15 2003