Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #42 Feb 28 2023 06:03:09
%S 1,2,5,12,16,3623,4119,618725,708567,1498739,2762990591
%N Numbers k such that k*prime(k) is a palindrome.
%C a(12) > 3.7*10^12. - _Giovanni Resta_, Jun 28 2013
%e 4119 is in the sequence since the 4119th prime is 39119 and 4199*39119 = 161131161 is a palindrome.
%p ispal:= proc(n) local L;
%p L:= convert(n,base,10);
%p L = ListTools:-Reverse(L);
%p end proc:
%p R:= NULL: count:= 0: p:= 1:
%p for k from 1 while count < 11 do
%p p:= nextprime(p);
%p if ispal(k*p) then R:= R,k; count:= count+1 fi
%p od:
%p R; # _Robert Israel_, Feb 22 2023
%t palQ[n_]:=FromDigits[Reverse[IntegerDigits[n]]]==n; t={}; Do[If[palQ[Prime[n]*n],AppendTo[t,n]],{n,15*10^5}]; t (* _Jayanta Basu_, May 11 2013 *)
%o (PARI) ispal(n) = my(d=digits(n)); d == Vecrev(d); \\ A002113
%o isok(k) = ispal(k*prime(k)) \\ _Alexandru Petrescu_, Feb 22 2023
%o (Python)
%o from sympy import sieve
%o def ok(n): return n and (s := str(n*sieve[n])) == s[::-1]
%o print([k for k in range(10**6) if ok(k)]) # _Michael S. Branicky_, Feb 22 2023
%Y Cf. A002113, A033286, A084121, A084123.
%K base,nonn,more
%O 1,2
%A _Giovanni Resta_, May 14 2003