Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Sep 08 2022 08:45:10
%S 1,1,8,63,656,8525,133120,2430547,50839808,1199150649,31495553024,
%T 911770726823,28846956187648,990358890251653,36670756251238400,
%U 1456804472261953275,61808742217201811456,2789456491560247772657
%N Fifth row of number array A084061.
%H G. C. Greubel, <a href="/A084096/b084096.txt">Table of n, a(n) for n = 0..300</a>
%F a(n) = ((n - sqrt(4))^n + (n + sqrt(4))^n)/2 = ((n+2)^n + (n-2)^n)/2.
%p seq( ((n-2)^n + (n+2)^n)/2, n=0..20); # _G. C. Greubel_, Jan 11 2020
%t Table[((n+2)^n + (n-2)^n)/2, {n,0,20}] (* _G. C. Greubel_, Jan 11 2020 *)
%o (PARI) vector(21, n, ((n-3)^(n-1) + (n+1)^(n-1))/2 ) \\ _G. C. Greubel_, Jan 11 2020
%o (Magma) [((n-2)^n + (n+2)^n)/2: n in [0..20]]; // _G. C. Greubel_, Jan 11 2020
%o (Sage) [((n-2)^n + (n+2)^n)/2 for n in (0..20)] # _G. C. Greubel_, Jan 11 2020
%o (GAP) List([0..20], n-> ((n-2)^n + (n+2)^n)/2); # _G. C. Greubel_, Jan 11 2020
%Y Cf. A084061, A084062, A084063, A084064, A084065, A084095.
%K easy,nonn
%O 0,3
%A _Paul Barry_, May 11 2003