login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square number array read by antidiagonals.
8

%I #15 Sep 08 2022 08:45:10

%S 1,1,1,1,1,4,1,1,5,27,1,1,6,36,256,1,1,7,45,353,3125,1,1,8,54,452,

%T 4400,46656,1,1,9,63,553,5725,66637,823543,1,1,10,72,656,7100,87704,

%U 1188544,16777216,1,1,11,81,761,8525,109863,1577849,24405761,387420489,1,1,12,90,868,10000,133120,1991752,32618512,567108864,10000000000

%N Square number array read by antidiagonals.

%H G. C. Greubel, <a href="/A084061/b084061.txt">Antidiagonal rows n = 0..100, flattened</a>

%F T(n, k) = ( (n - sqrt(k))^n + (n + sqrt(k))^n )/2.

%e Rows begin:

%e 1 1 4 27 256 ...

%e 1 1 5 36 353 ...

%e 1 1 6 45 452 ...

%e 1 1 7 54 553 ...

%e 1 1 8 63 656 ...

%p seq(seq( round(((k+sqrt(n-k))^k + (k-sqrt(n-k))^k)/2), k=0..n), n=0..10); # _G. C. Greubel_, Jan 11 2020

%t Table[If[n==0 && k==0, 1, Round[((k-Sqrt[n-k])^k + (k+Sqrt[n-k])^k)/2]], {n,0,10}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jan 11 2020 *)

%o (PARI) T(n,k) = round( ((k+sqrt(n-k))^n + (k-sqrt(n-k))^k)/2 ); \\ _G. C. Greubel_, Jan 11 2020

%o (Magma) [Round(((k+Sqrt(n-k))^k + (k-Sqrt(n-k))^k)/2): k in [0..n], n in [0..10]]; // _G. C. Greubel_, Jan 11 2020

%o (Sage) [[round(((k+sqrt(n-k))^k + (k-sqrt(n-k))^k)/2) for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Jan 11 2020

%o (GAP) Flat(List([0..10], n-> List([0..n], k-> ((k+Sqrt(n-k))^k + (k-Sqrt(n-k))^k)/2 ))); # _G. C. Greubel_, Jan 11 2020

%Y Rows include A000312, A062024, A084063, A084064, A084065.

%Y Diagonals include A084062, A084063, A084095.

%K nonn,tabl,easy

%O 0,6

%A _Paul Barry_, May 11 2003