Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Sep 08 2022 08:45:10
%S 0,1,-3,4,-6,7,-9,10,-12,13,-15,16,-18,19,-21,22,-24,25,-27,28,-30,31,
%T -33,34,-36,37,-39,40,-42,43,-45,46,-48,49,-51,52,-54,55,-57,58,-60,
%U 61,-63,64,-66,67,-69,70,-72,73,-75,76,-78,79,-81,82,-84,85,-87,88,-90
%N a(n) = -a(n-1) + a(n-2) + a(n-3), with a(0)=0, a(1)=1, a(2)=-3.
%H Colin Barker, <a href="/A084056/b084056.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (-1,1,1).
%F a(n) = (1/4) * ((1-6*n) * (-1)^n - 1).
%F G.f.: (x-2*x^2)/((1+x)*(1-x^2)).
%F a(n) = 2*a(n-2) - a(n-4) = -(-1)^n * A032766(n) = A001057(n) - 2*A001057(n-1). - _Ralf Stephan_, Aug 18 2013
%F a(n) = (2n - 1 - floor((n-1)/2)) * (-1)^(n-1). - _Wesley Ivan Hurt_, Nov 10 2013
%p A084056:=n->((1-6*n) * (-1)^n - 1)/4; seq(A084056(n), n=0..100); # _Wesley Ivan Hurt_, Nov 10 2013
%t Table[((1 - 6n)(-1)^n - 1)/4, {n,0,100}] (* _Wesley Ivan Hurt_, Nov 10 2013 *)
%t LinearRecurrence[{-1, 1, 1}, {0, 1, -3}, 101] (* _T. D. Noe_, Nov 11 2013 *)
%o (Magma) [((1-6*n)*(-1)^n-1)/4 : n in [0..100]]; // _Zaki Khandaker_, Jun 21 2015
%o (PARI) concat(0, Vec(x*(2*x-1)/((x-1)*(x+1)^2) + O(x^100))) \\ _Colin Barker_, Jun 21 2015
%Y Cf. A032766 (absolute values).
%K easy,sign
%O 0,3
%A _Paul Barry_, May 09 2003
%E Definition fixed by _Ralf Stephan_, Aug 18 2013