login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Integer coefficients a(n) of A(x), where a(n) = 1 or 2 for all n, such that A(x)^(1/2) has only integer coefficients.
29

%I #23 Aug 27 2015 15:02:23

%S 1,2,1,2,2,2,1,2,2,2,1,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,1,2,1,2,

%T 2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,1,2,2,2,1,2,2,2,1,2,1,2,2,2,2,2,

%U 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2

%N Integer coefficients a(n) of A(x), where a(n) = 1 or 2 for all n, such that A(x)^(1/2) has only integer coefficients.

%C More generally, the sequence "integer coefficients of A(x), where 1<=a(n)<=m, such that A(x)^(1/m) consists entirely of integer coefficients", appears to have a unique solution for all m. [That is true - see Theorem 17 of Heninger-Rains-Sloane (2006). - _N. J. A. Sloane_, Aug 27 2015] Is this sequence periodic? [It is not periodic for m = 2 or 3. Larger cases remain open. - _N. J. A. Sloane_, Aug 27 2015]

%H Robert G. Wilson v, <a href="/A083952/b083952.txt">Table of n, a(n) for n = 0..10000</a>

%H N. Heninger, E. M. Rains and N. J. A. Sloane, <a href="http://arXiv.org/abs/math.NT/0509316">On the Integrality of n-th Roots of Generating Functions</a>, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.

%t a[n_] := a[n] = Block[{s = Sum[a[i]*x^i, {i, 0, n - 1}]}, If[ IntegerQ@ Last@ CoefficientList[ Series[ Sqrt[s + x^n], {x, 0, n}], x], 1, 2]]; Table[ a[n], {n, 0, 104}] (* _Robert G. Wilson v_, Nov 25 2006 *)

%t s = 0; a[n_] := a[n] = Block[{}, If[IntegerQ@ Last@ CoefficientList[ Series[ Sqrt[s + x^n], {x, 0, n}], x], s = s + x^n; 1, s = s + 2 x^n; 2]]; Table[ a@n, {n, 0, 104}] (* _Robert G. Wilson v_, Sep 08 2007 *)

%Y Cf. A084202 (A(x)^(1/2)), A108335 (A084202 mod 4), A108336 (A084202 mod 2), A108340 (a(n) mod 2). Positions of 1's: A108783.

%Y Cf. A083953, A083954, A083945, A083946.

%K nonn,nice

%O 0,2

%A _Paul D. Hanna_, May 09 2003

%E More terms from _N. J. A. Sloane_, Jul 02 2005