login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of divisors of n that are congruent to 1 modulo 10.
12

%I #13 Dec 30 2023 04:56:13

%S 1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,2,2,1,1,1,1,1,1,1,1,2,1,2,1,

%T 1,1,1,1,1,1,2,2,1,2,1,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,2,2,1,1,2,1,1,

%U 1,1,2,1,1,1,1,1,2,1,1,1,2,2,1,2,1,1,1,2,1,1,2,1,2,1,1,1,1,1,2,1,2,2,1,1,2

%N Number of divisors of n that are congruent to 1 modulo 10.

%H Amiram Eldar, <a href="/A083911/b083911.txt">Table of n, a(n) for n = 1..10000</a>

%H R. A. Smith and M. V. Subbarao, <a href="https://doi.org/10.4153/CMB-1981-005-3">The average number of divisors in an arithmetic progression</a>, Canadian Mathematical Bulletin, Vol. 24, No. 1 (1981), pp. 37-41.

%F a(n) = A000005(n) - A083910(n) - A083912(n) - A083913(n) - A083914(n) - A083915(n) - A083916(n) - A083917(n) - A083918(n) - A083919(n).

%F G.f.: Sum_{k>=1} x^k/(1 - x^(10*k)). - _Ilya Gutkovskiy_, Sep 11 2019

%F Sum_{k=1..n} a(k) = n*log(n)/10 + c*n + O(n^(1/3)*log(n)), where c = gamma(1,10) - (1 - gamma)/10 = 0.769838..., gamma(1,6) = -(psi(1/10) + log(10))/10 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - _Amiram Eldar_, Dec 30 2023

%t a[n_] := DivisorSum[n, 1 &, Mod[#, 10] == 1 &]; Array[a, 100] (* _Amiram Eldar_, Dec 30 2023 *)

%o (PARI) a(n) = sumdiv(n, d, d % 10 == 1); \\ _Amiram Eldar_, Dec 30 2023

%Y Cf. A000005, A001227, A010879.

%Y Cf. A001620, A002392, A306716 (psi(1/10)).

%Y Cf. A083910, A083912, A083913, A083914, A083915, A083916, A083917, A083918, A083919.

%K nonn,easy

%O 1,11

%A _Reinhard Zumkeller_, May 08 2003