Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 May 25 2021 01:39:17
%S 0,1,0,0,-1,1,0,1,0,2,1,0,-1,1,0,0,-1,1,0,-1,-2,0,-1,1,0,2,1,0,-1,1,0,
%T 1,0,2,1,0,-1,1,0,2,1,3,2,1,0,2,1,0,-1,1,0,-1,-2,0,-1,1,0,2,1,0,-1,1,
%U 0,0,-1,1,0,-1,-2,0,-1,1,0,2,1,0,-1,1,0,-1,-2,0,-1,-2,-3,-1
%N G.f.: 1/(1-x) * sum(k>=0, (-1)^k*x^2^(k+1)/(1+x^2^k)).
%C For all n, a(3*A006288(n)) = 0 as proved in Russian forum dxdy.ru - see link.
%H <a href="http://dxdy.ru/post430735.html#p430735">Discussion in Russian forum dxdy.ru</a>
%H R. Stephan, <a href="/somedcgf.html">Some divide-and-conquer sequences ...</a>
%H R. Stephan, <a href="/A079944/a079944.ps">Table of generating functions</a>
%H R. Stephan, <a href="http://arXiv.org/abs/math.CO/0307027">Divide-and-conquer generating functions. I. Elementary sequences</a>
%F a(1)=0, a(2n) = -a(n)+1, a(2n+1) = -a(n).
%F a(n) = A030300(n) - A065359(n).
%o (PARI) for(n=1, 100, l=ceil(log(n)/log(2)); t=polcoeff(1/(1-x)*sum(k=0, l, (-1)^k*(x^2^(k+1))/(1+x^2^k)) + O(x^(n+1)), n); print1(t", "))
%o (PARI) a(n) = sum(i=0,logint(n,2)-1, if(!bittest(n,i),(-1)^i)); \\ _Kevin Ryde_, May 24 2021
%Y Cf. A030300, A065359, A023416, A006288.
%K sign,easy
%O 1,10
%A _Ralf Stephan_, Jun 18 2003