Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #61 Oct 29 2019 08:58:48
%S 1,3,11,45,201,963,4899,26253,147345,862083,5238459,32957037,
%T 214117209,1433320515,9867008979,69734001357,505212273441,
%U 3747124863747,28418591888235,220152270759597,1740363304031721,14027180742479043,115176800996769411,962726355659386125,8186311912829551281,70769800810139187843
%N Expansion of e.g.f. exp(3*x)*exp(x^2).
%C Binomial transform of A000898.
%C Hankel transform is A108400. - _Paul Barry_, Jun 13 2009
%C a(n) is the number of self-inverse signed permutations of length 2n that are equal to their reverse-complements and avoid the pattern (-2,-1). As a result, a(n) also gives the same thing but for avoiding any one of (-1,-2), (+2,+1) or (+1,+2) instead of (-2,-1) (See the Hardt and Troyka reference). - _Justin M. Troyka_, Aug 05 2011.
%C a(n) is also the number of skew-symmetric (n,n)-clans, or the number of B-orbits in the symmetric space of type CI, Sp_{2n}(C)/GL_n(C) where B is a Borel subgroup of Sp_{2n}(C). - _Aram Bingham_, Oct 08 2019
%H Michael De Vlieger, <a href="/A083886/b083886.txt">Table of n, a(n) for n = 0..717</a>
%H Aram Bingham, Ozlem Ugurlu, <a href="https://arxiv.org/abs/1903.07229">Sects and lattice paths over the Lagrangian Grassmannian</a>, arXiv:1903.07229 [math.CO], 2019.
%H A. Hardt and J. M. Troyka, <a href="http://www.mat.unisi.it/newsito/puma/public_html/23_3/hardt_troyka.pdf">Restricted symmetric signed permutations</a>, Pure Mathematics and Applications, Vol. 23 (No. 3, 2012), pp. 179--217.
%H A. Hardt and J. M. Troyka, <a href="https://apps.carleton.edu/curricular/math/assets/Andy_hardt_slides.pdf">Slides</a> (associated with the Hardt and Troyka reference above).
%F E.g.f.: exp(3*x+x^2).
%F From _Paul Barry_, Jun 13 2009: (Start)
%F G.f.: 1/(1-3x-2x^2/(1-3x-4x^2/(1-3x-6x^2/(1-3x-8x^2/(1-... (continued fraction);
%F a(n) = Sum_{k=0..floor(n/2)} C(n,2k) * (2k)! * 3^(n-2k) / k!. (End)
%F a(n) = i^n*Hermite_H(n, -3i/2), i=sqrt(-1). - _Paul Barry_, Jun 15 2009
%F a(0) = 1; a(1) = 3; a(n) = 3*a(n-1) + 2*(n-1)*a(n-2) for n >= 2. - _Justin M. Troyka_, Aug 05 2011
%F E.g.f. 1 + (x+3)*x/(G(0)-x^2-3*x) where G(k)= x^2 + 3*x + k + 1 - (x+3)*x*(k+1)/G(k+1); (continued fraction, Euler's 1st kind, 1-step). - _Sergei N. Gladkovskii_, Jul 12 2012
%F G.f.: 1/Q(0) where Q(k) = 1 + 2*x*k - 2*x - x/(1 - 2*x*(k+1)/Q(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Mar 07 2013
%F a(n) ~ n^(n/2)*2^(n/2-1/2)*exp(3*sqrt(n/2)-n/2-9/8) * (1+21*sqrt(2)/(32*sqrt(n))). - _Vaclav Kotesovec_, Jun 25 2013
%e Since a(2) = 11, there are 11 self-inverse signed permutations of 4 that are equal to their reverse-complements and avoid (-2,-1). Some of these are: (+3,+4,+1,+2), (+4,-2,-3,+1), (-1,+3,+2,-4), (-1,-2,-3,-4). - _Justin M. Troyka_, Aug 05 2011
%t a = {1, 3}; For[n = 2, n < 13, n++, a = Append[a, 3 a[[n]] + 2 (n - 1) a[[n - 1]]]]; a // _Justin M. Troyka_, Aug 05 2011.
%t CoefficientList[Series[Exp[3*x+x^2], {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Jun 25 2013 *)
%t Table[Abs[HermiteH[n, 3 I/2]], {n, 0, 20}] (* _Vladimir Reshetnikov_, Oct 11 2016 *)
%o (PARI) x='x+O('x^66); Vec(serlaplace(exp(3*x)*exp(x^2))) /* _Joerg Arndt_, Jul 12 2012 */
%Y Cf. A001813, A047974.
%K easy,nonn
%O 0,2
%A _Paul Barry_, May 09 2003