login
A083863
Consider recurrence b(0) = n/3, b(n) = b(n-1)*floor(b(n-1)); sequence gives first integer reached, or -1 if no integer is ever reached.
2
2, 336, 480480, 3, 10, 11, 4, 86632, 336, 5, 480480, 602088585139494925392355287938913017768414449509198770325691172429632961571366883360109083120, 6, 38, 40, 7, 2618, 8089284, 8, 4400, 4784, 9, 84, 87, 10, 164651957685772369755334525952840, 267038744632379007295584790187520, 11, 3260628657396881107663076132351728
OFFSET
6,1
COMMENTS
It is conjectured that an integer is always reached if the initial value is >= 2.
LINKS
J. C. Lagarias and N. J. A. Sloane, Approximate squaring (pdf, ps), Experimental Math., 13 (2004), 113-128.
CROSSREFS
Cf. A087666 (steps to reach an integer), A086336, A087663.
Sequence in context: A203608 A264942 A159488 * A246872 A057626 A201310
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 27 2003
STATUS
approved