login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array T(n,k) of second binomial transforms of generalized Fibonacci numbers, read by ascending antidiagonals, with n, k >= 0.
4

%I #44 Sep 08 2022 08:45:10

%S 0,0,1,0,1,5,0,1,5,19,0,1,5,20,65,0,1,5,21,75,211,0,1,5,22,85,275,665,

%T 0,1,5,23,95,341,1000,2059,0,1,5,24,105,409,1365,3625,6305,0,1,5,25,

%U 115,479,1760,5461,13125,19171,0,1,5,26,125,551,2185,7573,21845,47500,58025

%N Square array T(n,k) of second binomial transforms of generalized Fibonacci numbers, read by ascending antidiagonals, with n, k >= 0.

%C Row n >= 0 of the array gives the solution to the recurrence b(k) = 5*b(k-1) + (n - 6)*b(k-2) for k >= 2 with b(0) = 0 and b(1) = 1. The rows are the binomial transforms of the rows of array A083857. The rows are the second binomial transforms of the generalized Fibonacci numbers in array A083856.

%H G. C. Greubel, <a href="/A083861/b083861.txt">Antidiagonals n = 0..100, flattened</a>

%H OEIS, <a href="https://oeis.org/transforms.html">Transformations of integer sequences</a>.

%F T(n, k) = (((5 + sqrt(4*n + 1))/2)^k - ((5 - sqrt(4*n + 1))/2)^k)/sqrt(4*n + 1).

%F O.g.f. for row n >= 0: -x/(-1 + 5*x + (n-6)*x^2) . - _R. J. Mathar_, Dec 02 2007

%F From _Petros Hadjicostas_, Dec 25 2019: (Start)

%F T(n,k) = 5*T(n,k-1) + (n - 6)*T(n,k-2) for k >= 2 with T(n,0) = 0 and T(n,1) = 1 for all n >= 0.

%F T(n,k) = Sum_{i = 0..k} binomial(k,i) * A083857(n,i).

%F T(n,k) = Sum_{i = 0..k} Sum_{j = 0..i} binomial(k,i) * binomial(i,j) * A083856(n,j). (End)

%e Array T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:

%e 0, 1, 5, 19, 65, 211, 665, 2059, 6305, 19171, ...

%e 0, 1, 5, 20, 75, 275, 1000, 3625, 13125, 47500, ...

%e 0, 1, 5, 21, 85, 341, 1365, 5461, 21845, 87381, ...

%e 0, 1, 5, 22, 95, 409, 1760, 7573, 32585, 140206, ...

%e 0, 1, 5, 23, 105, 479, 2185, 9967, 45465, 207391, ...

%e 0, 1, 5, 24, 115, 551, 2640, 12649, 60605, 290376, ...

%e 0, 1, 5, 25, 125, 625, 3125, 15625, 78125, 390625, ...

%e ...

%p seq(seq(round( (((5+sqrt(4*(n-k)+1))/2)^k - ((5-sqrt(4*(n-k)+1))/2)^k)/sqrt(4*(n-k)+1) ), k=0..n), n=0..10); # _G. C. Greubel_, Dec 27 2019

%t T[n_, k_]:= Round[(((5 +Sqrt[4*n+1])/2)^k - ((5 -Sqrt[4*n+1])/2)^k)/Sqrt[4*n+1]]; Table[T[n-k, k], {n, 0, 10}, {k, 0, n}]//Flatten (* _G. C. Greubel_, Dec 27 2019 *)

%o (PARI) T(n, k) = round( (((5+sqrt(4*n+1))/2)^k - ((5-sqrt(4*n+1))/2)^k)/sqrt(4*n + 1) );

%o for(n=0,10, for(k=0,n, print1(T(n-k,k), ", "))) \\ _G. C. Greubel_, Dec 27 2019

%o (Magma)

%o T:= func< n,k | Round( (((5+Sqrt(4*n+1))/2)^k - ((5-Sqrt(4*n+1))/2)^k)/Sqrt(4*n + 1) ) >;

%o [T(n-k,k): k in [0..n], n in [0..10]]; // _G. C. Greubel_, Dec 27 2019

%o (Sage) [[round( (((5+sqrt(4*(n-k)+1))/2)^k - ((5-sqrt(4*(n-k)+1))/2)^k)/sqrt(4*(n-k)+1) ) for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Dec 27 2019

%Y Rows include A001047 (n=0), A093131 (n=1), A002450 (n=2), A004254 (n=5), A000351 (n=6), A052918 (n=7), A015535 (n=8), A015536 (n=9), A015537 (n=10).

%Y Cf. A083856 (second inverse binomial transform), A083856 (first inverse binomial transform), A082297 (main diagonal).

%K easy,nonn,tabl

%O 0,6

%A _Paul Barry_, May 06 2003

%E Name and various sections edited by _Petros Hadjicostas_, Dec 25 2019