login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083829
Palindromes k such that 3k + 1 is also a palindrome.
11
1, 2, 7, 77, 141, 151, 161, 242, 252, 262, 777, 7777, 14041, 14141, 14241, 15051, 15151, 15251, 16061, 16161, 16261, 24042, 24142, 24242, 25052, 25152, 25252, 26062, 26162, 26262, 77777, 777777, 1404041, 1405041, 1406041, 1414141, 1415141
OFFSET
1,2
COMMENTS
From Robert Israel, Feb 23 2023: (Start)
Includes A002281. It appears that the only terms with an even number of digits are in A002281. All other terms of more than 1 digit start with 14, 15, 16, 24, 25 or 26. It also appears that no terms contain the digits 3, 8 or 9, and the only ones that contain 7 are A002281. (End)
LINKS
MAPLE
ispali:= proc(n) local L;
L:= convert(n, base, 10);
L = ListTools:-Reverse(L)
end proc:
revdigs:= proc(n) local L, i;
L:= convert(n, base, 10);
add(L[-i]*10^(i-1), i=1..nops(L))
end proc:
palis:= proc(d) local r;
if d::even then [seq](revdigs(r)+10^(d/2)*r, r=10^(d/2-1)..10^(d/2)-1)
else [seq](revdigs(floor(r/10))+10^((d-1)/2)*r, r=10^((d-1)/2)..10^((d+1)/2)-1)
fi
end proc:
[seq(op(select(t -> ispali(3*t+1), palis(d))), d=1..7)]; # Robert Israel, Feb 23 2023
MATHEMATICA
Select[Range[15*10^5], AllTrue[{#, 3#+1}, PalindromeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Feb 14 2018 *)
CROSSREFS
Cf. A083830.
Sequence in context: A266880 A320329 A083455 * A067963 A304980 A059406
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 09 2003
EXTENSIONS
Corrected and extended by Ray Chandler, May 21 2003
STATUS
approved